
1 November 1997 Delphi Informant

November 1997, Volume 3, Number 11

Sharing Memory
Creating and Managing Memory-Mapped Files

Cover Art By: Doug Smith

ON THE COVER
6 Sharing Memory � Gregory Deatz
Sharing memory (and information) among applications was easy in 16-
bit Windows. Although it’s a bit more complicated in the 32-bit world of
Win95, Mr Deatz demonstrates how memory-mapped files get the job
done — and how to work with them in Delphi 2/3.

FEATURES
9 Informant Spotlight
Getting the Message � Robert Vivrette
Mr Vivrette shows us how to keep multiple Windows applications in
touch, with the adept use of the Windows API and memory-mapped files.

15 DBNavigator
The Decision Cube � Cary Jensen, Ph.D.
The Decision Cube components are a powerful suite of controls for
manipulating and displaying data for decision-support applications.
Dr Jensen provides an introduction.

20 Delphi Reports
Avoid Report-Engine Overkill � Warren Rachele
Developers must respond to conditions; simple output calls for a simple
solution. Here are some approaches for manipulating Windows printer
functions, rather than loading a lumbering report engine.

24 The API Calls
Using the BDE API: Part I � Bill Todd
Although much of the Borland Database Engine’s API is surfaced in
Delphi, some useful tools are available only by calling the API directly.
Mr Todd begins a two-part series.

30 At Your Fingertips
Disassembly View Revealed � Robert Vivrette
Activating an undocumented view of the assembler Delphi generates,
defeating screen savers, and restarting applications upon Windows start-
up are some of the treats Mr Vivrette has in store this month.

33 OP Tech
Multi-Tier Development � Ron Mashrouteh
Delphi 3’s interfaces are the building blocks of COM. Learn how this
group of semantically related routines aids multi-tier development, by
following our simple database-application example.

REVIEWS
37 WebHub

Product Review by Peter Hyde

42 Rapid Development
Book Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
44 File | New by Richard Wagner

2 November 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Beond Technology Releases Multimedia Suite
selecting a pixel location.
Bitmaps can be loaded
from a file, resource, or
DLL. Variable granularity
and speed allow effects to
be optimized for bitmap
size.

TStretchPanel is an elastic-
like panel that automatical-
ly resizes the controls
placed on it. This component
also works with variable-sized
graphic windows, such as
map viewing.

TStretchPanel can be
nested for selective control
resizing in a form.

Beond Technology Corp.
Price: Beond Multimedia Suite,
US$159 (US$449 with source code);
THotButton, US$69 (US$269 with
source code); TImageFX, US$69
(US$269 with source code); and
TStretchPanel, US$29 (US$129 with
source code).
Phone: (773) 388-3771
E-Mail: brianlow@mcs.com
Web Site: http://www.mcs.net/-
~brianlow/beond.html
Nesbitt Software Corp.
began online sales of
ShareLock 2.0 for
Windows 95 and NT.
ShareLock is a component
that turns any 32-bit
Windows application into a
trial version with as little as
one line of code. ShareLock
2.0 includes ActiveX, VCL,
and DLL versions for use
with any Windows pro-
gramming language.

ShareLock enables pro-
grammers to lock their
software after a specified
number of days or execu-
tions, or after an absolute
date.

It also provides an
optional grace period and
special extension key codes.

Nesbitt Software Offers
ShareLock Online
Programmers can use
ShareLock’s built-in data
encryption, key generation,
and dialog boxes, or may
override any of these fea-
tures to provide greater
security or customized mes-
sages.

ShareLock also watches
for users attempting to
defeat the locking mecha-
nism by using extension
codes more than once,
changing the date on their
system, etc.

Nesbitt Software Corp.
Price: US$199.95
Phone: (619) 259-4700
Web Site: http://www.nesbitt.com
Remember All Suite

MountainTop Systems has released
the Remember All Suite, two compo-
nents that simplify the entry and stor-
age of user preference and configu-
ration information. This information

is usually a mixture of strings,
booleans, checkboxes/radio buttons,

or floats, dates, etc.
TRememPanel, a descendant of

TPanel, holds a PageControl with
other setup recording controls and

saves the data to an .INI file.
Multiple configurations are also

automatically handled.
Other components enhance the data

storage options. Remember All Suite is
priced at US$38, or US$65 with source

code. For a free trial version visit
http://www.ozemail.com.au/~mtntop.
Beond Tech-
nology Corp.
announced the
Beond Multimedia
Suite, a new com-
ponent suite for
Delphi that
enables developers
to add graphical
effects and buttons
to their applica-
tions. The suite
includes three
components:
THotButton,
TImageFX, and
TStretchPanel.

THotButton can create
3D up/down buttons from
any bitmap. It features
transparency, stretch, 3D
caption with word wrap,
center, visual disable indi-
cation, and more.

TImageFX provides over
40 flicker-free bitmap tran-
sition effects, including
explode, implode, slide,
pixelation, and others.
Bitmaps can have a trans-
parent color defined by

3 November 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Top Support
Ships TopGrid
Top Support has released

TopGrid, a new VCL grid
component for Delphi 2 and
3. TopGrid can replace the
DBGrid and StringGrid
components. It supports
standard Windows behavior,
including normal scrolling
and the ability to use head-
ings as buttons.

The appearance can be
customized by setting fonts,
colors, alignment, and 3D
effects, either on the grid
level or for individual rows,
columns, or cells. Headings
can be multi-line, and the
number of fixed rows or
columns can be set. Also,
rows and columns can be
set to visible or invisible,
and read-only or editable.
The display order of
columns can be set, and
with the unbound version
the display order of rows
can also be changed.
TopGrid supports edit
boxes, check boxes, combo
boxes, picture boxes, and cell
buttons. The combo box
provides incremental search-
ing and can be multi-column
supporting the cell styles and
appearance options of the
grid itself. Memos can be
edited directly in the grid.

TopGrid can be used as a
normal grid for editing or
viewing data, or as a multi-
column list box with single
or multi-line selection. A
demonstration program and
trial version can be down-
loaded from Top Support’s
Web site. At press time, Top
Support planned to ship a
version of TopGrid for
C++Builder in early
November.

Top Support
Price: US$249, with source add
US$99.
Phone: 31-10-4513941
E-Mail: contact@topsupport.com
Web Site: http://www.topsupport.com
Sax Software Announces Sax Basic Engine 4.0

on the previous version by
adding support for multi-
threading, support for Visual
Basic 5, and enhancements to
the Object Browser.

Sax Basic Engine’s support
for multi-threading features
allows multiple macros to
run simultaneously. Users
of C++ and the MFC will
benefit from the included
documentation and C++
samples. This allows MFC
developers to create appli-
cations that include a
macro language, such as
Microsoft Word and Excel.

MFC developers can also
use the MFC Class Wizard to
create ActiveX objects that
extend the Sax Basic language
with their own commands
and functions, as well as inte-
grate the language engine
with custom applications.

Sax Software
Price: Sax Basic Engine 4.0, US$495.
Sax Basic Engine ships with an uncon-
ditional 30-day money-back guaran-
tee, and requires no royalties or run-
time fees.
Phone: (800) 645-3729 or
(541) 344-2235
E-Mail: info@saxsoft.com
Web Site: http://www.saxsoft.com
DTalk Brings Speech to
Delphi Applications

Out & About Productions has released
DTalk, a set of speech-enabling compo-
nents that use the Microsoft Speech API.
These native Delphi components enable

programmers to add both speech
recognition and text-to-speech to appli-
cations. Expected uses include talking
interface elements such as error mes-
sages, controls, online Help, and ad

hoc database reports, as well as voice-
driven menus, macros, and agents.

Working with AT&T, DEC, IBM, and oth-
ers, Microsoft has published the Speech

API (SAPI) specification, which has
become the standard for using speech

engines and applications.
Because the DTalk components are
SAPI-based, Delphi developers can
select from various SAPI-compliant

speech engines.
DTalk is priced at US$350. For more
information, visit http://www.o2a.com

or call (415) 695-9935.
Sax Software is shipping Sax
Basic Engine 4.0, an ActiveX
control that integrates with
Delphi, Visual Basic, and
Visual C++ applications.

Version 3.0 of Sax Basic
Engine added support for
classes, events, and multiple
modules. Version 4.0 builds

4 November 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

CClliieenntt//SSeerrvveerr DDeevveellooppeerr’’ss GGuuiiddee
wwiitthh DDeellpphhii 33

Ken Henderson
SAMS Publishing

IISSBBNN:: 0-672-31024-4
PPrriiccee:: US$59.99

(967 pages, CD-ROM)
PPhhoonnee:: (800) 545-5914 or

(317) 228-4231
Sequiter Software Releases CodeBase 6.3

the data file by pages, and
more. CodeControls 3.0
also boasts an improved
design-time interface with
the introduction of property
pages for modifying a con-
trol’s property set.

For developers who contin-
ue to build 16-bit applica-
tions, CodeBase 6.3 will still
ship with CodeControls 2.0.

CodeBase 6.3 includes
source code and updated
support for the latest com-
pilers, including Delphi 3,
Visual C++ 5, C++Builder,
Visual Basic 5, and the Java
1.1 SDK.

Sequiter Software
Price: US$395
Phone: (403) 437-2410
E-Mail: info@sequiter.com
Web Site: http://www.sequiter.com
Luxent Software Ships SuccessWare Database Productivity Components

replacements for the BDE
and JET, respectively.

DB Power is a set of over
35 DBMS controls for
Delphi and C++Builder.
Consisting of source code
controls for Super grids,
image buttons, Quicken-
style lookups, and other pro-
grammer tools, DB Power
allows database creation,
editing, and management in
design time and run time.
Both the BDE and Apollo
are equally supported.

Luxent Software
Price: Apollo, Artemis, or DB Power: full
version US$199; upgrade version
US$99. SDE4 Suite is US$349.
Phone: (888) 4LUXENT or
(909) 699-9657
E-Mail: sales@luxent.com
Web Site: http://www.luxent.com
ExceleTel Adds Telephony to Delphi Applications

Delphi 1, 2, or 3, C++Builder,
and Microsoft Visual Basic
(as well as other 32-bit
environments with OCX
support).

ExceleTel, Inc.
Price: ExceleTel TeleTools, US$199;
ExceleTel TeleTools Express, US$49.
Phone: (919) 233-2232
E-Mail: sales@exceletel.com
Web Site: http://www.exceletel.com
Sequiter Software has
launched CodeBase 6.3,
incorporating CodeControls
3.0, Sequiter’s 32-bit
ActiveX data-aware controls.
CodeControls 3.0 includes
bound edit, list, combo,
slider, and button controls,
as well as a multi-functional
navigator control.

CodeControls 3.0 was re-
written from version 2.0. In
addition to the existing set
of controls (edit, combo,
list, and data), version 3.0
added new slider and button
controls. The slider control
works like a scroll bar for a
database, while the button
control allows you to isolate
one or more of the data-
control buttons in the appli-
cation window.

The data control has also
been expanded to include
one-click functionality for
such tasks as re-indexing
and compressing data files,
saving and refreshing the
current record, traversing
Luxent Software launched
new versions of its Success-
Ware Database Productivity
Components, including
Apollo 4.0 for Delphi and
Artemis 4.0 for Visual Studio
(which are bundled as the
SuccessWare Database
Engine [SDE4] Suite), and
DB Power 2.0, a set of plug-
and-play DBMS components
for Delphi.

SDE4 adds language-
independent User-
Definable Functions
(UDFs) to filter and index
expression strings and 32-
bit thread-safe operations.

Apollo and Artemis are
direct-access (i.e. non-
ODBC/SQL) database
engines that don’t require
ODBC or SQL to access
Xbase file formats. Apollo
and Artemis operate no-code
solutions and plug-and-play
ExceleTel, Inc. offers the
TeleTools product family, a
Delphi VCL (and a set of
ActiveX controls) for desktop
computer telephony.

TeleTools can create server-
based applications such as
voicemail or interactive voice
response, but its specialty is
enabling desktop applications
to work with telephones.
TeleTools works with

5 November 1997 Delphi Informant

News
L I N E

November 1997
Scotts Valley, CA — Borland
has shipped ObjectInsight for
Delphi 3, a Delphi source-
code navigation system that
browses the origin and imple-
mentation of object class
properties, methods, and
events. An internal tool devel-
oped for the Delphi team,
ObjectInsight enables users to
understand their VCL and
class libraries.

Navigating the Delphi Visual
Component Library (VCL)
source code provides insight
into the techniques used by
the Delphi developers when
building the VCL. Object-
Insight supplements the
Delphi Help system by pro-
viding a visual object frame-
work from which to drill into
the Delphi source.

ObjectInsight allows users to
run queries against all infor-
mation in a project. It features

Borland Releases
New ObjectInsight
for Delphi 3
customized reports, allows
developers to create custom
project files that include
source code from multiple
locations in unrelated units,
and maintains several views of
a project at a time.

Using ObjectInsight, users
can view all available variables,
methods, properties, and
events of a class in their order
of declaration and the class
hierarchy, including their
implementation levels. This
tool allows developers to jump
to the declaration or imple-
mentation of any procedure,
function, class, type, or vari-
able using the built-in viewer
or Delphi 3’s editor.

In addition, ObjectInsight
can compare versions of
source units in a format-
independent manner, reflect-
ing changes in informational
content only.

ObjectInsight is currently
US$79.95. To order, call
(800) 453-3375 or visit
http://www.borland.com.
Borland Joins Java Development on IBM’s San Francisco Project

Borland and IBM are

working to improve Java
development using visual
tools, wizards, and object-
oriented components. The
partnership also allows
JBuilder to be installed
world-wide at IBM San
Francisco education centers.

For information, visit
http://www.ibm.com/java/-
SanFrancisco/.
Luxent Development Merges DFL Software and SuccessWare International

offices in California and
Paris, in addition to its main
research-and-development
facility in Provence, France.
For details, visit http://www.-
luxent.com.
Borland Expands AS/400 Partner Program

AS/400 development tools,
including the Delphi/400
Client/Server Suite and
C++Builder/400 Client/-
Server Suite.

A listing of Borland/400
partners is located at
http://www.borland.com/-
borland400/partner.html.

GSE Erudite, headquar-
tered in South Jordan, UT, is
a wholly-owned subsidiary of
GSE Systems. For details,
visit http://www.erudite.com.
Corel Licenses Borland
Technology

Corel announced it will license
Borland’s SQL Builder, SQL
Links, InterBase, and Local
InterBase for inclusion with
Corel Paradox 8. For more

information, visit the Corel Web
site at http://www.corel.com.
Borland Previews
Visual dBASE 7

Visual dBASE 7, an upgrade to
its PC database for Windows 95
and NT, is scheduled to ship this
fall. This 32-bit version of dBASE
will support ActiveX components,
a new two-way object-oriented
report designer, and visual pro-
ductivity tools, as well as native

connectivity to Paradox,
Access, FoxPro,

and SQL database servers.
For details, visit http://www.-

borland.com/VdBASE/.
Nashville, TN — Borland
and IBM announced a com-
bined R&D effort to devel-
ope Java applications with
JBuilder and IBM’s San
Francisco Project.
Los Angeles, CA — Luxent
Development Corp. has
acquired DFL Software in
Paris and SuccessWare
International in California.
DFL Software, known for
its Light Lib graphical
ActiveX software compo-
nents and AS/400 middle-
ware, recently released its
new Magic Menus develop-
ment utility. SuccessWare
develops database-engine
products, including Apollo
for Delphi.

Luxent is an international
business software integra-
tor with principal sales,
training, and support
Nashville, TN — Borland
announced GSE Erudite,
an AS/400 software con-
sulting firm, has joined the
Borland Partner/400 pro-
gram. World-wide member-
ship now includes 41 solu-
tion providers in 28
countries.

The Borland Partner/400
program is designed to pro-
vide sales, marketing, and
support for IBM AS/400
customers using Borland’s

6 November 1997 Delphi Informant

On the Cover
Delphi / Shared Memory

By Gregory Deatz
Sharing Memory
Creating and Managing Memory-Mapped Files

Sharing memory under Windows 3.1 was as simple as creating a DLL with
global variables. In Win32, global memory spaces are private to each

process, so it’s no longer this simple; however, the Windows API provides a sim-
ple, safe, and fast mechanism for sharing memory: the memory-mapped file.
Using mutexes (a way of specifying critical code between processes), the develop-
er can create robust applications that can safely read and write shared memory.
This article demonstrates how to create
memory-mapped files and manage them in
critical sections identified using mutexes. It
will also go one step further, showing how
to wrap these API calls in easy-to-use,
reusable objects, including a few surprises
along the way.
The Mechanisms
Win32 introduced the flat address space to
the Windows programming community; with
it came the private address space. You might
have seen Delphi’s ShareMem unit mentioned
in its online documentation. Contrary to its
name, it doesn’t allow you to “share memory;”
rather it’s a “replacement” memory-manager
that allows you to pass Delphi’s string type
back and forth between DLLs and their call-
ing applications. Delphi doesn’t inherently
provide a shared-memory object (i.e. there is
no TSharedMem object packaged with
Delphi); however, the Windows API provides
an easy-to-use, low-level mechanism for shar-
ing and managing memory.

These two mechanisms are called memory-
mapped files (MMFs) and mutexes. MMFs
enable developers to allocate sharable memory
within the operating system’s paging file;
mutexes provide a mechanism for managing
civilized access. (Actually, MMFs do much
more than share memory; they provide a tool
for mapping entire files into virtual memory,
allowing the developer to treat large files as
large arrays of bytes; but that’s an entirely dif-
ferent discussion.) The MMF is the only
mechanism in Windows that can share memo-
ry between processes. ActiveX, OLE, or any
other tool you can imagine for sharing memo-
ry between applications uses MMFs at its core.

Mutexes allow the developer to specify critical
sections of code that will be executing in sep-
arate processes. A critical section of code is a
piece of code that performs some operation
that may interfere with activities occurring in
other threads. For example, when shared
memory is being accessed, it’s important that
a given thread can operate on the shared
memory exclusively; thus it is “critical.”

On the Cover
(Mutexes can be used in a single process to manage synchronous
access to global variables, but it’s much cheaper to use Delphi’s
TThread.Synchronize method, or to use another suite of native
API system calls: InitializeCriticalSection, EnterCriticalSection,
LeaveCriticalSection, and DeleteCriticalSection. These system
calls manage the application-level CRITICAL_SECTION, and
are well documented in Win32.hlp.)

The Memory-Mapped File
Project Example1.dpr provides a simple example of how
memory-mapped files work. We use five simple system calls.
The first is CreateFileMapping:

function CreateFileMapping(hFile: THandle;

lpFileMappingAttributes: PSecurityAttributes;

flProtect, dwMaximumSizeHigh, dwMaximumSizeLow: DWord;

lpName: PChar): THandle;

where hFile is a valid file handle to the file to be mapped. To
map a file is to effectively load an entire file into virtual mem-
ory. This allows the developer to treat a file as a simple array of
bytes. To create true shared memory, we don’t want to map an
actual file; we only want to use this memory-mapping feature
so we can create shared memory.

The special file handle $FFFFFFFF (-1) tells Windows we
want to map space from its paging file. In other words, it
tells Windows, “Give me a file mapping that doesn’t really
map a file. Just give me a memory space that can be shared
between processes.”

lpFileMappingAttributes describes the security attributes the
developer wishes to associate with the mapped file. (A dis-
cussion of this argument is beyond the scope of this article.)
flProtect indicates the desired file protection for the view.
This translates into opening a file read-only, write-only, or
read-write. For the purposes of our article, we consider only
read-writable views.

dwMaximumSizeHigh and dwMaximumSizeLow indicate
the number of bytes the developer wishes to allocate for
the MMF. It provides a total of 64 bits for this value, so
you are virtually unlimited in the size of the file you wish
to map. For our purposes, dwMaximumSizeHigh is always
0. lpName names the file map. Whenever the developer
wishes to refer to this MMF, he or she must use this name.

The next call is to MapViewOfFile:

function MapViewOfFile(hFileMappingObject: THandle;

dwDesiredAccess, dwFileOffsetHigh, dwFileOffsetLow,

dwNumberOfBytesToMap: DWord): Pointer;

where hFileMappingObject is a valid handle to an MMF
returned by CreateFileMapping, and dwDesiredAccess is
the access the developer desires to have against the particu-
lar MMF. This is roughly equivalent to opening a file read-
only, write-only, or read-write. Again, we concern our-
selves with read-writable data only. For the purposes of
this article, dwFileOffsetHigh, dwFileOffsetLow, and
dwNumberOfBytesToMap are all to be set to zero.
7 November 1997 Delphi Informant
Given a valid pointer to an address returned by MapViewOfFile,
the UnmapViewOfFile function unmaps the view of the MMF:

function UnmapViewOfFile(lpBaseAddress: Pointer): BOOL;

The CloseHandle function is used to close the hFileMap
returned by CreateFileMapping:

function CloseHandle(hObject: THandle): BOOL;

and GetLastError returns the most recent error that occurred
in Windows.

function GetLastError: Integer;

This function is used specifically to determine the error status
of our previously-mentioned API calls. Use this function to
determine the status of the MapViewOfFile function.

In Unit1.pas of Example1.dpr, the form’s OnCreate event is
used to initialize and map a view of the MMF:

hFileMap := CreateFileMapping($FFFFFFFF, nil,
PAGE_READWRITE, 0, share_len + 1,

'MyMemoryMappedFile');

...

SharedPChar := PChar(MapViewOfFile(hFileMap,

FILE_MAP_READ + FILE_MAP_WRITE, 0, 0, 0));

As you can see, we map share_len + 1 bytes of memory into the
paging file and specify that we want to be able to read and
write it. We call this MMF “MyMemoryMappedFile.” Then,
using MapViewOfFile, we can map a view of the file into the
application’s address space, thus making SharedPChar a shared
null-terminated string of length share_len. The extra byte is for
the null character (#0).

Using the GetLastError function, we can determine if the
MMF was created, or if it already exists. If the MMF was just
created, we can initialize it like this:

if GetLastError <> ERROR_ALREADY_EXISTS then
StrPLCopy(SharedPChar, 'Hello world', share_len);

Then, we set the value in our Edit control:

Edit1.Text := SharedPChar;

Now that the MMF has been created and initialized, we can
treat SharedPChar as if it’s just another pre-allocated character
array. The click event for btnSet merely copies the data in the
Edit control to SharedPChar, and the click event for btnRefresh
copies the data in SharedPChar to the Edit control.

By launching two or more instances of Example1.dpr, you will
see that, indeed, the MMF called MyMemoryMappedFile
shares its data between processes.

Now, we want to clean up after ourselves; the form’s OnDestroy
event unmaps and closes the MMF:

UnmapViewOfFile(SharedPChar);

CloseHandle(hFileMap);

On the CoverOn the Cover
The Mutex
Now that we’ve seen how we can share memory between process-
es, the next question is, “How do we manage this shared memo-
ry to ensure orderly access to it?” Obviously, we want predictable
results from our MMF, so the prospect that two processes could
be writing to our MMF at the same time is unacceptable.

Mutexes provide mutually exclusive access to critical sections
of code across threads and across processes. Example2.dpr
shows very minor modifications to the original project,
Example1.dpr. We introduce a new handle, hAccessMutex
(which allows us to instantiate a mutex), and two new system
calls, WaitForSingleObject and ReleaseMutex.

We create the mutex using CreateMutex:

hAccessMutex := CreateMutex(nil, False,'MyAccessMutex').

The first argument tells the function simply to use default
security, and the final argument names the mutex. The
interesting argument here is the second argument, which
tells CreateMutex if it should make this thread the initial
owner of the mutex.

When a thread owns a mutex, any other thread (in any
process) waiting on the mutex cannot execute. This means we
can wrap all access to the MMF in two system calls. In the
following code:

WaitForSingleObject(hAccessMutex, INFINITE);

try
... // do your stuff.

finally
ReleaseMutex(hAccessMutex);

end;

the WaitForSingleObject function will wait as long as neces-
sary (potentially forever, as indicated by the INFINITE con-
stant) for hAccessMutex to be “disowned.” Windows guaran-
tees that only one process or thread can own a mutex at a
time, so as soon as WaitForSingleObject returns, we are
confident we have exclusive access to the MMF. Because all
other threads that wait on hAccessMutex will wait for this
process to relinquish ownership of the mutex, we must guar-
antee that ReleaseMutex will be called. Hence, we use the
try..finally construct.

Getting Fancy
At this point, we can stop. We have created an MMF and we
have protected access to the MMF using mutexes. However, it
would be nice if we could wrap this up in an easy-to-use
Delphi object. Our goals for the object are to:
1) share a piece of memory,
2) manage access to the shared memory, and
3) be alerted when the shared memory has been altered by

another thread.

We already have what we need to build an object that does
items one and two, but accomplishing three requires a few
more tricks from the Windows API. In particular, we need to
use threads and events.
8 November 1997 Delphi Informant
As the reader already knows, a thread is the most basic
Windows object that is given CPU time. All processes have
at least one thread, but Win32 allows a single process to
have many threads of execution. As the reader may not
already know, events allow a thread to wait for a specified
event to occur.

Example3.dpr implements an object called TSharedMem,
which provides the base functionality for sharing any data
type, as well as two end-user objects, TSharedString and
TSharedInt, which are both descended from TSharedMem.

The code available for download (see the end of the arti-
cle for details) is heavily commented so that examination
of the source will reveal all the intricacies involved. We
will provide a cursory explanation of the code here, but
it’s left to the reader to examine the code for a complete
understanding.

When an object of type TSharedMem is instantiated, it creates
handles for an event, an MMF, a mutex, a thread, and a criti-
cal section. The thread responds to broadcasts of the event (an
event is broadcast using the Windows API PulseEvent func-
tion), which indicates that a process or thread has modified
the shared object. This thread then locks the shared buffer,
calls an OnChange event if one was provided, and subsequent-
ly unlocks the shared buffer.

Conclusion
Sharing memory in Win32 is a bit more complicated than it
was in Windows 3.1, but it’s still a relatively simple process.
In fact, we have successfully navigated the terrain of quite a
few API tools (MMFs, mutexes, events, threads, and critical
sections), all of which have played an integral role in imple-
menting a robust, easy-to-use object that shares memory
across processes. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\NOV\DI9711GD.

Gregory Deatz is a senior programmer/analyst at Hoagland, Longo, Moran, Dunst &
Doukas, a law firm in New Brunswick, NJ. He has been working with Delphi and
InterBase for approximately two years and has been developing under the Windows
API for approximately five years. His current focus is in legal billing and case-
management applications. He is the author of FreeUDFLib, a free UDF library for
InterBase 4.x written entirely in Delphi and hosted at http://www.borland.com/-
devsupport/interbase/download/FreeUDFLib.html. In addition to being published in
Delphi Informant, he has also been published in Optical Computing. He can be
reached via e-mail at gdeatz@skyweb.net, by voice at (732) 545-4717, or by fax
at (732) 545-4579.

9 November 1997 Delphi Informant

Informant Spotlight
Delphi / Windows Messages

By Robert Vivrette
Getting the Message
Techniques for Communicating between Applications

Do you remember passing messages in school? You would scribble a love
note or tidbit of gossip on a little scrap of paper, fold it up, and write a

name on it. Then you would hand it to a friend, who would hand it to another
friend, and the note would wend its way across the room until it (hopefully)
arrived at its intended destination (and not on the teacher’s desk!).
But passing messages isn’t just something
grade-schoolers do. All good Delphi pro-
grammers know that Windows is a message-
based operating system and that message-
passing is the name of the game in the
Windows programming world.

This article will discuss some basic principles
for communications between applications. A
term you might often hear applied to this dis-
cussion would be Interprocess Communications,
or IPC. This term is a pretty broad descrip-
tion of any kind of communication between
separate applications or processes. Some of
these techniques include (but are not limited
to) Windows messaging, shared memory,
shared files, DDE, OLE, memory-mapped
files, Windows atoms, the Clipboard, and
others. All of these are mechanisms by which
one process can send data to another. In light
of how applications are becoming more mod-
ular, it’s only natural that we see increasing
attention being placed on the ability of appli-
cations to talk to one another.

This article will discuss, in some depth, the
topic of Windows messaging. I will also
touch on the topic of memory-mapped files,
but for more details on this second tech-
nique, refer to Gregory Deatz’s article
“Sharing Memory” on page 6. Both tech-
niques are powerful and easy to implement
for sending data between applications. Before
we start, however, let me say that there are
many ways of achieving the effects in the
samples I have provided. However, my inten-
tion is to give an easy-to-understand tutorial
on just these two techniques.

Windows Messages
No doubt many of you are familiar with
how Windows talks to itself. Essentially,
every aspect of a Windows program’s behav-
ior is the result of a Windows message in
one form or another. For example, when
you enter data into the Notepad applica-
tion, there are messages flying all over the
place. There are messages that track when
keys go down, when keys go up, when the
mouse moves a pixel, or when its buttons
are clicked, just to name a few.

For the most part, however, the average
Delphi programmer generally only deals
with messages passed around within a single
application; even then you might not really
think they are messages. For example, your
form might have a message handler called
OnMouseDown, but Delphi is really
responding to a WM_MOUSEDOWN
Windows message, and is passing it along
through a hierarchy of message-handling
locations. Ultimately, the message gets to
your form, and control is passed into your
OnMouseDown routine. You could con-
struct a fake WM_MOUSEDOWN mes-
sage and send it to your form, by using the
SendMessage API call, and your form
wouldn’t know the difference. It got a mes-
sage; that’s all it’s concerned about. Sending

Figure 1: Test Application #1.

Informant Spotlight

procedure TForm1.LookForApp(StartLooking: Boolean);

begin
if StartLooking then
lblOtherApp.Caption := 'Looking...'

else
lblOtherApp.Caption := 'Test Application #' + OtherApp;

if StartLooking then
TheHWnd := 0;

Timer1.Enabled := StartLooking;

btnStringSend.Enabled := not StartLooking;

btnValueSend.Enabled := not StartLooking;

btnBitmapSend.Enabled := not StartLooking;

OtherAppFound := (TheHWnd <> 0);

Image1.Refresh;

Image2.Refresh;

end;

procedure TForm1.Timer1Timer(Sender: TObject);

begin
TheHWnd := FindWindow('TForm1',

'Test Application #' + OtherApp);

if TheHWnd <> 0 then
LookForApp(False);

end;

Figure 2: Looking for another application.
messages between applications is only slightly different than
sending messages inside an application.

Before we get too far in this discussion, let’s define a
Windows message. A Windows message is simply a record
structure that Windows uses to communicate information
between controls, forms, windows, etc. The message structure
first has a field named HWnd, which is a handle to the win-
dow or control to which the message is directed. Next comes
the Msg field, which is the actual message number being sent.
In Delphi, these messages are defined in the Messages.pas
unit. When you see messages such as WM_MOUSEDOWN,
this is really only a constant that has been defined to make
the purpose of the message more intelligible.

Next come two fields for passing message-specific data along
with the message. These are named wParam and lParam. In 16-
bit Windows, wParam was a Word and lParam was a Longint;
in Win32, they are both Longints. At different times in a mes-
sage’s life, it might have additional data associated with it —
such as when the message was created, where the mouse cursor
was at the time, and so on. However, I don’t want to make this
discussion too complex, so I’m going to skip these features.

As I said earlier, a message can be sent between applications
just as easily as it can to controls of forms within an applica-
tion. All you need to know is the window handle of the
receiver. In the case of sending a message to another applica-
tion, you only need to know that application’s window han-
dle, to identify it as the recipient of the message.

Talk Amongst Yourselves
To illustrate the techniques used in this article, I put together
a sample application. And to make it clearer that we are com-
municating between two distinct applications, I have estab-
lished two Char constants: ThisApp and OtherApp. I then
made two copies of this application and its supporting .DFM
and .PAS files. In the first copy, I set ThisApp to “1” and
OtherApp to “2.” In the second copy, I set ThisApp to “2” and
OtherApp to “1.” When these two programs are compiled,
they will be functionally the same, but one will know it is
10 November 1997 Delphi Informant
Test Application #1 and the other is Test Application #2. To
highlight this difference at run time, this constant is used to
create the title of the application. Figure 1 shows Test
Application #1; of course, Test Application #2 would look the
same, but would have Test Application #2 as its title. Note
also that each application is designed to both send and receive
data. The left side of the application shows the data it is send-
ing, and the right side shows the data it is receiving.

So our first step — in setting up some kind of communica-
tion from one program to the other — is to find the other
application. You can’t send a message to someone if you don’t
know who or where they are. We shouldn’t require the user to
be involved in this process, so let’s have the programs do the
work. To automate this process, we will use the FindWindow
API call within a timer loop. When one application is
launched, it starts the timer, and begins looking for its part-
ner using FindWindow. Once the second application is
launched, it starts doing the same thing.

At this point, they are both running, so the next tick of each
one’s timer will cause them to find each other. The two rou-
tines responsible for this search are called LookForApp and
Timer1Timer (see Figure 2).

When the application first runs, it calls LookForApp in its
FormCreate method, with a StartLooking parameter set to
True. Inside LookForApp, we set a Label on the form to indi-
cate we’re looking, and also enable or disable the three Send

buttons on the form. The timer is also turned on. On each
tick of the timer, the Timer1Timer function is called. Here we
make a call to FindWindow to look for the other application.
The first parameter is the form’s ClassName. In this case, both
of them are the class TForm1. The second parameter is the
form’s banner title. If Test Application #1 was running, it
would be looking for Test Application #2. If the window is
found, FindWindow returns its handle. If not found, it
returns zero. Therefore, if we get back a non-zero number, it

TForm1 = class(TForm)
...

public
procedure WndProc(var TheMsg: TMessage); override;

end;

procedure TForm1.WndProc(var TheMsg: TMessage);

begin
if TheMsg.Msg = TheMsgVal then
begin

{ It's our custom message -- deal with it! }
end;

inherited WndProc(TheMsg);

end;

Figure 3: Overriding the WndProc method.

Informant Spotlight
means the other application was found, and we need to turn
off the timer. We do this by calling LookForApp again with
the StartLooking parameter set to False. This enables the three
Send buttons, and sets a Boolean variable indicating the other
application was found. The handle of the other application is
saved in TheHWnd.

At this point, both applications are running, and each
knows the window handle of the other. In a Windows
application, there is a procedure that’s used as a kind of
clearinghouse for all message traffic. This is the WndProc
procedure. If you want to create your own inter-process
message, you will need to override this procedure, and lis-
ten for the message you have defined. That brings us to
the next topic: defining our message.

Defining the Message
Earlier I mentioned that all the standard Windows mes-
sage names are really just constants. For example,
WM_MOUSEMOVE is the hex value $0200. Of course,
$0200 doesn’t tell us much. To define our own message, we
must get such a value, but we need to make sure it doesn’t
collide with any of the pre-defined values. If it’s a message
that stays within our application (perhaps a message to or
from a control), message collision isn’t really a problem; we
simply make sure we don’t define a message constant that
conflicts with another in that single application. However, if
you’re communicating to another application, you should
make sure the message constant is unique to those two appli-
cations. So what value do we pick for our message constant?

Microsoft has defined that user messages should always reside
above hex $0400 (as defined by the constant WM_USER). You
might then be inclined to just pick a number above WM_USER
and use that as your message constant. However, when commu-
nicating between applications, this is not good practice, and in
rare circumstances can cause collisions between user-defined
messages that other applications are using. Windows resolves this
problem with the RegisterWindowMessage function. It takes a
single unique string parameter, and returns an unused message
identifier. The valuable aspect of this function is that if two
applications register the same string, the function will return the
same message identifier to each one.

Therefore, at the top of the sample application, I defined
a constant called TheMsgConstant and set it equal to
11 November 1997 Delphi Informant
“MyUniqueMessageConstant.” The message identifier is
then obtained in the application’s FormCreate procedure by
calling RegisterWindowMessage, and passing it this
constant. The returned value is our unique message identi-
fier and is saved in TheMsgVal.

Many of you have created message handlers for code in a sin-
gle application. You defined your message constant at the top
of the application as something like:

WM_MyMsg = WM_USER+1;

then wrote a message handler for it defined like this:

procedure MyVerySpecialMessage(var Message: TMessage);
message WM_MyMsg;

We can write a message handler that specifically handles a mes-
sage with the value MyMsgConst. Because this is a constant, the
compiler knows how to compile it into the final executable.
But in our case, we don’t know the value until the program
runs; we obtain it from RegisterWindowMessage.

Enter the WndProc method. As I mentioned before, this is a
sort of clearinghouse for the application’s messages. To listen
in on a custom message, all we have to do is override the
application’s WndProc method and look for our message value
(which is stored in the variable TheMsgVal). If it is that value,
we handle it accordingly. If it isn’t, it gets passed on to the
inherited WndProc handler (the one that was overridden).
Figure 3 shows pseudo-code for this overridden method.

So at this point, we have two running applications that are
aware of each other and have registered a Windows message
to communicate with. We have overridden the WndProc
method, so we know when one of the messages comes along.

Sending a Number
In our first test — the easiest one — we’re going to just send
a number to the other application. As mentioned earlier, mes-
sages have two fields that can be used to pass custom data. In
this case, let’s use the lParam field of the message. As men-
tioned, lParam is a Longint, so we can pass any number that
would fit in a long integer. Because I designed the test appli-
cation to be capable of passing other things with this mes-
sage, we’ll also need to provide something that says this mes-
sage is holding a numeric value in its lParam field. Therefore,
we’ll use the wParam field to hold one of four constants we
have defined: wpString, wpValue, wpBitmap, or wpShutdown.
(Keep in mind that we could have defined four different mes-
sages rather than just one. That would have made this mecha-
nism of categorizing the message by means of the wParam
field unnecessary.)

If you again look at Figure 1, you’ll see one of our test appli-
cations running. To pass a number over to the second appli-
cation, you simply enter a value in the Value To Send edit box
and click on its associated Send button. When that button is
clicked, the btnValueSendClick method is called; it performs
two simple lines of code. The first is to verify that we have a

procedure TForm1.WndProc(var TheMsg: TMessage);

var
ThePtr : PChar;

TmpBmp : TBitmap;

begin

if TheMsg.Msg = TheMsgVal then

case TheMsg.wParam of

wpString :

if TheMapHnd <> 0 then
begin
ThePtr := MapViewOfFile(

TheMapHnd,FILE_MAP_WRITE,0,0,0);

edtStringRec.Text := ThePtr;

UnmapViewOfFile(ThePtr);

end;

wpValue :

edtValueRec.Text := IntToStr(TheMsg.lParam);

wpBitmap :

begin
TmpBmp := TBitmap.Create;

try
TmpBmp.Handle := TheMsg.lParam;

Image2.Picture.Bitmap.Width := TmpBmp.Width;

Image2.Picture.Bitmap.Height := TmpBmp.Height;

Image2.Picture.Bitmap.Canvas.Draw(0,0,TmpBmp);

finally
TmpBmp.ReleaseHandle;

TmpBmp.Free;

end;
end;

wpShutDown :

LookForApp(True);

end;

inherited WndProc(TheMsg);

end;

Figure 4: Completing the WndProc method.

Informant Spotlight

Figure 5: Sending the value 3145 to Test Application #2.
valid handle to the other application. If so, we then send the
message. The first parameter is the other application’s window
handle. The second is the custom message value we obtained
from RegisterWindowMessage. The next value is the wParam
field. In this case we are sending wpValue, which will tell the
receiving application that it should expect a Longint in the
lParam field. Lastly, we have the lParam field itself. All we do
is convert the value of the edit box from a string to an inte-
ger, and send that value.

What happens on the receiving side? First, the message is
delivered by Windows to the receiving application. When it
gets there, it ultimately passes through the WndProc method
that we have overridden. Now all we need to do is put a little
more meat into that method. Figure 4 shows how we exam-
ine the incoming message to determine what it contains.
After determining that it is indeed our message, we run the
wParam field through a case statement to determine which
flavor of our custom message we have received. In this case,
the value in wParam will be wpValue, indicating that lParam
is holding a Longint. Then, as you can see in the wpValue
case in our WndProc method, we simply cast the message’s
lParam into a string, and place it in the receiver’s edit box.
Simple! Figure 5 shows both applications running, and we
12 November 1997 Delphi Informant
have sent the value 3145 from Test Application #1 to Test
Application #2.

Sending a Bitmap
Now let’s try something a little more complex: sending a
bitmap from one application to another. The key component
of a bitmap (as far as Windows is concerned) is its handle.
With this handle, Windows can access the rest of the bitmap’s
data. Because a window’s handle is just a Longint value, we
are going to pass the bitmap’s handle across applications in
the same manner as the previous example. However, there is
just a little more to this one.

As you can see in our test application, there is a button that
allows you to select a bitmap. After you have made your
selection, the bitmap is placed in a TImage under the label
Bitmap To Send. When we click on the Send button, the
btnBitmapSendClick method is called. It’s essentially identi-
cal to the btnValueSendClick we discussed earlier; the only
difference is that we pass the value wpBitmap as the wParam
parameter, and the handle of the TImage’s bitmap as the
lParam parameter.

If we refer back to Figure 4, we can look at how the
wpBitmap case is handled. First, though, we must under-
stand that this handle that has just been sent to us from the
other application is still the handle of that TImage’s bitmap.
Whatever we do to it will impact the other program. To
ensure that we accept the other bitmap gracefully, we will
first create a temporary bitmap, and assign its handle to the
handle that we received in the message. Then we set the
receiving TImage’s bitmap width and height to match. Then
we copy the graphic.

Once we’re done, we want to free our temporary bitmap.
However, we don’t want that handle to be destroyed, so we
first call ReleaseHandle. This separates the handle from the
bitmap, so when the bitmap is destroyed, the handle is unaf-
fected. If we didn’t include this statement, we’d destroy the

Informant Spotlight

function TForm1.ObtainMappingHandle: THandle;

begin
Result := CreateFileMapping($FFFFFFFF,nil,PAGE_READWRITE,

0,2000,TheMappingConstant);

if Result <> 0 then
// Did it return a valid handle?

if GetLastError = ERROR_ALREADY_EXISTS then
// Did it already exist?

begin
CloseHandle(Result);

// Close this and we will open an existing.

Result := OpenFileMapping(FILE_MAP_WRITE,False,

TheMappingConstant);

end;
end;

procedure TForm1.btnStringSendClick(Sender: TObject);

var
ThePtr : PChar;

begin
if (TheHWnd = 0) or

(TheMapHnd = 0) then
Exit;

ThePtr := MapViewOfFile(TheMapHnd,FILE_MAP_WRITE,0,0,0);

StrPCopy(ThePtr,edtStringSend.Text);

SendMessage(TheHWnd,TheMsgVal,wpString,0);

UnmapViewOfFile(ThePtr);

end;

Figure 6: Obtaining a mapping handle and sending a string
using an MMF.
other application’s handle to its bitmap when our temporary
bitmap was destroyed. Doing it the right way, however, pro-
vides the result of both TImages containing the same image.

Memory-Mapped Files
Our last example is the use of memory-mapped files
(MMF), which is simply a way of sending an arbitrary
block of data between two cooperating applications. This is
done by obtaining a handle to a common piece of memory
space from the operating system. When both applications
have a handle to this space, they can write information
back and forth to each other. The concept of an MMF is
similar to creating a disk file and writing out the data while
letting the other application open it up and read it.
However, MMFs have a number of advantages over this
kind of mechanism. As I mentioned earlier, Gregory
Deatz’s article covers this topic in much greater detail, so
I’m just going to hit the high points.

To illustrate this feature, we’re going to send a string
between the test applications. This string will be a Delphi
2/3 HugeString rather than the 256-character Delphi 1
string. The first step we must take when preparing to move
data with an MMF is to create the file mapping. This will
be a handle that Windows will use to access our mapped
file space. I did this in the FormCreate method using a call
to a small function I created called ObtainMappingHandle
(see Figure 6).

The two Win32 API calls I use in this function are
CreateFileMapping and OpenFileMapping. CreateFileMapping
creates a new mapping, and OpenFileMapping opens one that
already exists in the system. What I’ve done here is to try to cre-
13 November 1997 Delphi Informant
ate one first. If it succeeds, then I have my handle. If it fails,
however, it returns the value ERROR_ALREADY_EXISTS by
means of the GetLastError function. In this case, I then call
OpenFileMapping to open the existing one. The result of my
ObtainMappingHandle function is that it will open an existing
mapping handle or create a new one if necessary.

When I call CreateFileMapping, I must pass in parameters to
define the type of MMF I’m interested in. The second-to-last
parameter in CreateFileMapping is MaxMapLen, which is a
constant I defined to specify the maximum allowable length
for our file. In the const section at the top of the application,
I defined this arbitrarily as 2000, so at most we will be able
to send a string no more than 2,000 characters long. The last
parameter is TheMappingConstant, another unique string
constant we have defined in both applications — specifically,
the string “MyUniqueMappingConstant.” Because both
applications will use the same string, they will ultimately
obtain a handle to the same MMF.

The return result of the function is a handle we’ll use to refer
to the MMF; the value is stored as TheMapHnd. I get the
mapping handle in this fashion because the first application
that runs is going to create the file mapping under the name
of our unique string constant. When the second application
runs, it won’t be able to create one under the same name
because it already exists in the system. Therefore, it opens the
existing one instead.

Looking again at Figure 6, you will see the btnStringSendClick
method. This method is called when the user enters a string,
then clicks on its associated Send button. We first ensure that
we have a valid handle to the other application and also have
a valid handle to our file mapping. Then we open a view to
the file with MapViewOfFile. Think of creating the file map-
ping as using the AssignFile method on a disk file, and the
MapViewOfFile function like using Reset or Rewrite on that
file. The return result from MapViewOfFile, however, is an
actual pointer to the memory space used by the file mapping.

All we need to do now is put the string in it and let the
other application know it’s there. We first copy the string to
the mapped area using StrPLCopy (which just copies the
string, up to a maximum number of characters). Next we
send a message to the other application telling it that a string
is waiting for it in the MMF. You will note that we don’t
actually pass any data in the lParam field of our “string”
message; the message simply notifies the other application
that a string is available. After the message is sent, we close
our view to the MMF with UnmapViewOfFile.

In this example, I’m using a Windows message to synchro-
nize the transfer of data to and from the MMF. I place the
data in the MMF’s data area, then send a message to the
other application telling it to go check. Because we’re only
dealing with two applications, this method will work well.

In a more complex environment, however, with many
applications trying to hit the MMF at the same time, this

Figure 7: Our second test application after receiving the data.

Informant Spotlight
simple mechanism would have to be replaced by using
mutexes (again, see Gregory Deatz’s article).

On the receiving application, we return to the WndProc
method illustrated in Figure 4. Here the wpString case has
been triggered by our new message. That tells us that the
other application has placed a string in the MMF and is
waiting for us to retrieve it. All we do is open up a view to
the file with MapViewOfFile that returns a pointer to the
start of the string. Then we assign that pointer to the Text
property of our edit box. And presto! The string appears in
our receiving application. The only thing left is to close our
view of the file with UnmapViewOfFile. Figure 7 shows
our second test application after it has received all three
types of messages sent to it.

To give you one final thing to think about, ask yourself this
question: If I send a string from Test Application #1 to Test
Application #2, and then send a different string from Test
Application #2 to Test Application #1, wouldn’t the strings
write over each other in the mapped file? Well, as it turns
out, when you assign the pointer into the edit box’s Text
property, it makes a unique copy of the string on its own.
Another of the wonders of Delphi!

Shutting Things Down
The last item I want to briefly cover is the fourth message
type I defined, namely wpShutdown. Whenever one appli-
cation closes, I first send this message to the other applica-
tion to let it know that its sibling has terminated. That
tells the receiving application to start up the timer looking
for the other application again. That means that you can
shut down one application and the other will immediately
disable its buttons and start looking for the second appli-
cation again. If you restart it, they will re-synchronize with
each other.

Hopefully this article has provided a deeper understanding
of how to communicate various types of data between
applications. Believe me, there are plenty of other ways to
14 November 1997 Delphi Informant
accomplish these same tasks, but passing messages and
using memory-mapped files are two of the easier ways your
applications can talk. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\NOV\DI9711RV.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

15 November 1997 Delphi Informant

DBNavigator
Delphi 3

By Cary Jensen, Ph.D.
The Decision Cube
An In-depth Review of Its Features

The Client/Server edition of Delphi 3 introduces a collection of components
designed for decision support. Collectively they are referred to as the

Decision Cube. The core to these components is a non-visual component
named DecisionCube, which stores data for display in grids and graphs.
While the role of a DecisionCube at first
appears to be similar to a DataSet, it’s differ-
ent in a number of important ways. First, a
DecisionCube stores data in memory, unlike
a DataSet, which points to data. Second, a
DecisionCube is designed to store only cer-
tain types of data — specifically, dimensions
and summary statistics.

Dimensions are typically discrete, non-ordinal
values without a natural order, such as
Department within a company (accounting,
research and development, and so forth), or
religious affiliation (Muslim, Catholic,
Protestant, and so forth). Summary statistics
are measurements of those dimensions (e.g.
departments may be measured for sum of
annual budget or total number of employees,
while religious affiliation may be measured for
number of members or average member age).

A DecisionCube gets its data from a DataSet,
which can be a Table, Query, or StoredProc
component. It can also receive data from a
specialized query component, called a
DecisionQuery. The DecisionQuery provides
a component editor that simplifies the
process of defining the query. TDecisionQuery
descends directly from TQuery, and doesn’t
introduce new properties or methods.

The data stored in a DecisionCube can be
displayed in either a DecisionGrid or a
DecisionGraph (i.e. a TeeChart component).
The DecisionGrid is a tabular control that
displays rows and columns. A minimum of
one row or column within the DecisionGrid
is associated with at least one dimension in
the DecisionCube. One or more cells in the
DecisionGrid display the summary statistics
calculated on the displayed dimension(s).
Data of this form, displayed in this format, is
often called a crosstab, a cross-tabulation, an
xtab, or another, similar name.

An Overview
DecisionGraph is used to graph the summary
statistic by the dimensions stored in the
DecisionCube. You can use one or more
DecisionGrids and DecisionGraphs with a
single DecisionCube. The DecisionGrids and
DecisionGraphs don’t connect directly to a
DecisionCube. Instead, there is an intermedi-
ary component called a DecisionSource. The
role played by a DecisionSource between a
DecisionGrid (or DecisionGraph) and a
DecisionCube mimics a DataSource compo-
nent working between data-aware controls
and a DataSet.

There is only one more Decision Cube com-
ponent: the DecisionPivot, which is analogous
to a DBNavigator, in that it permits the user
to more easily manipulate a non-visual control
(the DecisionCube, in this case).

There are a number of steps to consider when
using the Decision Cube components:

Define a DataSet that includes at least one
dimension field and one summary field.
Configure a DecisionCube using the data
from the DataSet.
Point a DecisionSource to the
DecisionCube.

Figure 1: The Decision Query Editor.

Figure 2: The Dimensions/Summaries page showing all fields
from the tables participating in the query.

DBNavigator

Figure 3: The Decision Query Editor showing only the query fields.
Attach at least one DecisionGrid or DecisionGraph to the
DecisionSource.
Optionally, you can attach a DecisionPivot to the
DecisionSource.

These steps are described in the following sections.

Defining the DecisionQuery
The data loaded into a DecisionCube must possess certain
characteristics. There must be one or more fields represent-
ing dimensions of interest, and there must be one or more
fields that represent simple, descriptive statistics about
those dimensions. In some cases a Table or StoredProc con-
tains or produces data in this form, but you’ll usually have
to query the data to get what you need. Because of its pow-
erful component editor, the DecisionQuery is best suited
for this purpose.

Begin by placing a DecisionQuery component on your form,
and set its DatabaseName property to DBDEMOS. Next,
either double-click the DecisionQuery, or right-click it and
16 November 1997 Delphi Informant
select Decision Query Editor to display the Decision Query
Editor shown in Figure 1. Now, construct a query that pro-
duces one or more dimensions and their associated calcula-
tions. You can click Query Builder and use it to define the
query. Otherwise, you can select the SQL Query page of the
Decision Query Editor and enter:

SELECT ITEMS.PartNo, ORDERS.PaymentMethod,

CUSTOMER.Country, SUM(ITEMS.Qty),

SUM(ORDERS.AmountPaid), AVG(ORDERS.AmountPaid),

COUNT(ORDERS.OrderNo)

FROM "ITEMS.DB" ITEMS

INNER JOIN "ORDERS.DB" ORDERS

ON (ITEMS.OrderNo = ORDERS.OrderNo)

INNER JOIN "CUSTOMER.DB" CUSTOMER

ON (ORDERS.CustNo = CUSTOMER.CustNo)

GROUP BY ITEMS.PartNo, ORDERS.PaymentMethod,

CUSTOMER.Country

Note one important characteristic of the query. You must
have a GROUP BY clause, and the order of the fields in the
GROUP BY statement must match the order of field selec-
tion in the SELECT clause. Note also the use of SUM, AVG,
and COUNT operators to calculate the simple descriptive
statistics. Once you have entered the query, select Edit Done,
and choose the Dimensions/Summaries tab. Your form
should resemble Figure 2.

In many cases, only the fields selected in the query are of
interest. To display only those fields, click the Query Fields

button on the Decision Query Editor. As shown in Figure 3,
this will often greatly reduce the number of fields displayed.
When done, click OK to close the Decision Query Editor
and save your changes.

Defining the DecisionCube
Once the DataSet is producing the correct data, link the
DecisionCube to the DataSet. Place a DecisionCube on your
form, and set its DataSet property to DecisionQuery1. Next,
use the Decision Cube Editor to define how the decision data
is loaded and displayed, as well as to control the
DecisionCube’s memory use (see Figure 4). To display the
Decision Cube Editor, either double-click on the

Figure 4: The Decision Cube Editor.

DBNavigator

Figure 5: The Memory Control page of the Decision Cube Editor
permits you to manage the memory requirements of a
DecisionCube.

Figure 6: A DecisionGrid displays data at design time when
attached to a DecisionSource that points to an active
DecisionCube.
DecisionCube, right-click the Decision Cube and select
Decision Cube Editor, or choose the DecisionCube and invoke
the DimensionMap property editor.

Use the Dimension Settings page of the Decision Cube Editor
to control when data is loaded from the DataSet, as well as the
display characteristics of the data. To do this, select a dimension
or summary field from the Available Fields list. Next, use the
Display Name field to specify a label. If you didn’t use a
DecisionQuery to select the data (in other words, if you used a
Table, Query, or StoredProc), use the Type field to define
whether the field is a dimension or a summary. The Active Type

field permits you to define when the data is loaded (as needed,
immediately, or never). By setting a field to As Needed, you
reduce overall memory use, but increase the DecisionCube’s
response time to changes. Use Format to specify a Delphi format
statement to format the data, Grouping to define the grouping
of a date-related dimension (by year, month, and so forth), and
Initial Value to set the beginning value of a range (used when
you limit dimensions on the Memory Control page).

Controlling Memory Use
Because a DecisionCube stores information (as opposed to
pointing to it as the Table component does), the amount of
17 November 1997 Delphi Informant
memory it requires depends on the number and size of the
dimensions selected, as well as the number of summary statis-
tics calculated. Because the number of data points increases
exponentially as you add dimensions, the amount of data
stored by a DecisionCube can easily get out of hand. You can
control this by being selective about the number and size of
dimensions, as well as the number of summary statistics calcu-
lated for each dimension. If this isn’t possible, limit the num-
ber of dimensions and summaries stored at any given time.

These DecisionCube memory issues also affect its performance
at design time; you may find there isn’t enough memory to
work with the DecisionCube at design time. If so, use the
Design Data Options section of the Memory Control page in
the Decision Cube Editor to limit what is loaded at design
time (see Figure 5). Note the DecisionCube also has an
OnLowCapacity event property. Create an event handler for
this property if you need to respond to low-memory condi-
tions at run time. If your DecisionCube uses a DecisionQuery,
and low memory isn’t a problem, you’ll typically use the
Decision Cube Editor only to control display labels and sum-
mary data formatting.

Using the Data-Aware Decision Controls
There are three data-aware decision controls you can use with
a DecisionCube: DecisionPivot, DecisionGrid, and
DecisionGraph. Placing any one of these requires you first
add a DecisionSource, and link its DecisionCube property to a
DecisionCube.

Once that’s completed, add one or more of the following com-
ponents: DecisionPivot, DecisionGrid, and DecisionGraph.
While it can be done, there is rarely any justification for placing
a DecisionPivot on a form without a corresponding
DecisionGrid or DecisionGraph. Furthermore, typically you
won’t place a DecisionGraph without a corresponding
DecisionPivot. A DecisionGrid, in contrast, can appear by itself
on a form, or with a DecisionGraph. To demonstrate the rela-
tive roles of these components, start by placing only a
DecisionGrid.

Using the DecisionGrid
As long as the non-visual DecisionCube components are in
place and active, data is available as soon as you set the
DecisionGrid’s DecisionSource property to a valid
DecisionSource (see Figure 6). This may be affected by
design-time memory-control settings you’ve made.

Figure 7: Placing a DecisionGraph on a form and pointing it to
a DecisionSource creates a chart.

Figure 8: The main form of the example DECCUBE project.

DBNavigator
If the DataSet associated with the DecisionCube defines more
than one dimension, the DecisionGrid will display a 2D grid
— one dimension identifying row membership, and another
defining column membership. The corresponding summary
value will be displayed for each row and column combina-
tion. For example, the rows identify payment method, the
columns identify part number, and a sum of amount paid is
the summary value. A single cell within the grid will contain
the sum of all payments for one particular part number made
using one particular payment method. For instance, as seen
in Figure 6, a given cell may display the total payments made
using American Express for part number 900.

Both at design time (if the properties permit it) and during run
time, you can right-click on various parts of the DecisionGrid to
change the dimensions represented, as well as the summary val-
ues displayed. These changes to the selected summary values and
dimensions affect the DecisionCube’s properties directly.
Furthermore, you can drag a column to a row, or a row to a col-
umn, to change the orientation of the DecisionGrid. Finally, you
can right-click the DecisionGrid to change additional properties
of the DecisionCube. However, in most cases, you will also
provide a DecisionPivot, giving the user a more friendly
way to affect DecisionCube properties. (Using the
DecisionPivot is described later in this article.)

Using the DecisionGraph
The DecisionGraph is different from the Chart and
DBChart components because it has a DecisionSource prop-
erty, ultimately getting its data from a DecisionCube. To
demonstrate this, place a DecisionGraph on your form. As
soon as you set its DecisionSource property to the
DecisionSource, a chart appears in the DecisionGraph (see
Figure 7). Furthermore, if you change summary values of
dimensions using the DecisionGrid on the form, the data
in the chart changes as well.

While you can control the dimensions and summaries dis-
played in a DecisionGraph using a DecisionGrid, in most
cases you’ll want to place a DecisionPivot on your form,
18 November 1997 Delphi Informant
and control the DecisionCube through it. Changes you
make to the DecisionCube properties using a
DecisionPivot are reflected in any DecisionGraphs that
also point to the DecisionCube. For information on con-
trolling the chart type and individual characteristics of a
DecisionGraph, such as line colors and axis dimensions,
see October’s installment of DBNavigator.

Using a DecisionPivot
The DecisionPivot is a visual control that provides a run-time
interface to certain essential properties of a DecisionCube. Its
purpose is to permit users to select dimensions to expand or
collapse, and the summary values to display.

To demonstrate the use of a DecisionPivot, place one on the
form. Align it to alTop, and set its DecisionSource property to
DecisionSource1. To finalize the decision form at this point,
you may also want to align the DecisionGrid to alTop. Next,
add a Splitter component, align it to alTop and set its Cursor
property to crVSplit. Finally, align the DecisionGraph to
alClient. An example of these components in this orientation
can be found in the project named DECCUBE (see Figure 8).

To change the summary value displayed, select the left-most
button on the DecisionPivot and choose the summary value
to display. To collapse or expand a dimension, click on the
button associated with the dimension. To change a dimen-
sion from a row to a column, or a column to a row, drag the
button associated with the dimension from its current posi-
tion to a new position. Buttons that appear to the right of
the small table icon with horizontal stripes in the
DecisionPivot define the row dimensions. The buttons
appearing to the right of the small table icon with vertical
stripes define the column dimensions. To change the order
of dimensions on a particular axis, drag the buttons associ-
ated with the dimensions in question to new positions. The
left-most button represents the highest-level dimension on
its axis, the second left-most button represents the second
dimension along that axis, and so forth.

You can use two or more DecisionPivot components for a
single DecisionSource. This is usually done to place only row

1

DBNavigator
dimensions on one DecisionPivot, and only column dimen-
sions on another DecisionPivot. You control which types of
dimensions appear on a given DecisionPivot by using its
Groups property. You can also define a DecisionPivot to only
display the drop-down list for available summaries.

When using more than one DecisionPivot, align them differ-
ently. For example, align your column-dimension DecisionPivot
to alTop, and the row DecisionPivot to alLeft. You can change
the GroupLayout property of this control to permit the buttons
to appear vertically, rather than horizontally. However, remem-
ber that changes to the dimensions of a DecisionCube can take
a long time, depending on the number of discrete levels of the
dimensions involved. Using the methods of the DecisionSource
component, such as OnBeforePivot and OnNewDimensions, you
can ask the user to confirm the changes.

For more information on using DecisionCube components,
see Chapter 16, “Using Decision Support Components,” in
the Delphi 3 Developer’s Guide that ships with Delphi.

Conclusion
The Decision Cube components constitute a powerful collec-
tion for manipulating and displaying data for decision-support
applications. It’s one more reason to consider investing in a
copy of Delphi 3 Client/Server edition. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor
of Delphi Informant, and was a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://idt.net/~jdsi. You can also reach Jensen Data Systems at
(281) 359-3311, or via e-mail at cjensen@compuserve.com.
9 November 1997 Delphi Informant

20 November 1997 Delphi Informant

Delphi Reports
Delphi 1 / Delphi 2 / Delphi 3

By Warren Rachele
Avoid Report-Engine Overkill
Return to Basics with the TPrinter Object

Auser clicks the Print button of the shiny new version of SUPER APP, expect-
ing a near-instant reaction from the printer. Instead, he is greeted by the

sound of a grinding disk drive struggling to load the report engine. This test of
patience is amplified by the brevity of the two-line report that eventually
appears in the printer tray.
We developers must recognize that this kind
of small annoyance leads to a greater overall
dissatisfaction with our products. Fortunately,
this situation is easily preventable by adding
low-level understanding of the WIN32 API
and Delphi print functions to your quiver of
techniques.

The developer’s task is to measure the quanti-
ty and style of the required output against
the effort and overhead of programmatic
solutions. Simple text and formatted database
reports are sometimes better handled by
manually manipulating the Windows printer
functions, rather than loading a print engine
such as ReportSmith, with all its associated
overhead. As with most development tasks,
Delphi provides a number of approaches.

A Printing Primer
To lay a foundation for Delphi techniques, a
quick primer on Windows printing is in
Function Role

AbortDoc Terminates a print job.
EndDoc Ends a print job.
EndPage Ends a page.
SetAbortProc Sets the abort function

for a print job.
StartDoc Starts a print job.
StartPage Prepares the printer

driver to receive data.

Figure 1: Windows print-spooler functions.
order. Printing in both Windows 3.x and
Windows 95 is handled by the graphics-
device interface (GDI). The procedure for
outputting text and graphics on a printer is
very much the same as for displaying text and
graphics on a video-output device. The pro-
gram will retrieve a handle to a device con-
text, then direct the output accordingly. This
is Windows’ method for ensuring device
independence. Delphi doesn’t need to know
the specific commands required by a particu-
lar printer. Instead, it calls high-level func-
tions from the GDI, which converts them
into low-level device commands specific to
the output device. When the application
sends output to a printer device context,
Windows activates the print spooler to man-
age the print request. The print spooler pro-
vides six functions for controlling the print
job (see Figure 1).

TPrinter is the Delphi class that encapsulates
this printer interface. Within the Printers
unit, the variable Printer is declared as an
instance of TPrinter ready to be called.
(Within 16-bit Delphi, Printer is the name of
a global object of the TPrinter class. 32-bit
Delphi still instantiates a global object of
class TPrinter, but is local to the Printers
unit. This relates to the addition of the func-
tion SetPrinter, which can change the global
object.) Figure 2 lists the properties of the
TPrinter object.

Property Role

Aborted Checks whether the user aborted the print
Canvas Serves as the drawing surface of the page.
Capabilities Encapsulates the capabilities of the selected
(32-bit only) the orientation, number of copies, and whe
Copies Returns information from the device mod
(32-bit only) number of copies printed.
Fonts A list of fonts supported by the printer.
Handle A handle to the device context.
Orientation The paper orientation.
PageHeight The height of canvas in pixels.
PageNumber The page number.
PageWidth The width of the canvas in pixels.
PrinterIndex The index of the selected printer from the P
Printers A string list of the printers recognized by W
Printing The property has a value of True when the

has been called, False when EndDoc has b
Title The job title that will appear in the print m

Figure 2: The properties of TPrinter.

Delphi Reports

implementation

uses Printers;

proc PrintSomething;

begin
Printer.BeginDoc;

Printer.Canvas.Textout(10,10,'This is some text');

Printer.EndDoc;

end;

Figure 3: A call to TextOut.

Printer.BeginDoc;

OutLine := 'This is the line to be centered.';

AlignText := (Printer.PageWidth div 2) -

(Printer.Canvas.TextWidth('A') *

(Length(OutLine) div 2));

Printer.Canvas.Textout(AlignText, 10, OutLine);

Printer.EndDoc;

Figure 4: Centering text.
TPrinter Properties
The key property of the TPrinter object is Canvas, which is
used the same way for the printer as for a form. Text and graph-
ical output is directed to the printer’s canvas, from which it is
converted to printer commands and sent to the device. To use
the canvas and begin a print job, the developer calls the printer’s
BeginDoc method. This will open the canvas surface to receive
output. All Canvas methods are then available to produce the
desired format. When a page of output has been laid out on the
canvas, the printer’s EndDoc method is used to send the output
to the printer. The Abort method can be called to discard a
print job. The NewPage method, alternately, will send output to
the printer, then start working on a new canvas page.

The methods used to format the output on the canvas differ in
their abilities. I’ll present them in order of declining precision,
with regard to placing text on the canvas.

Canvas Differences
Before continuing, let’s note some important differences in
canvas usage. Coordinates for printed output lie along a
plane that is much more dynamic than that of a video-
output device. Changing the resolution for the application’s
carefully designed output can happen as quickly as the user
can switch from the network laser printer to the local line
printer or fax software. X and Y on the laser-printer plane
will not fall in the same spot on lower-resolution print
devices such as the line printer. Hard-coded coordinates will
21 November 1997 Delphi Informant
produce incomplete output, and scroll
bars — obviously — will not be on
hand to display the missing data.

By providing device information through
its device context, Windows eases the
task of managing this dynamic environ-
ment. Specifics such as pixel measure-
ments can be retrieved through a call to
the API function GetDeviceCaps. A spe-
cific example of calling the function with
a device context and an enumerated con-
stant will appear later in this article.

Centering Text
The first example will print text lines
to the printer canvas, using the
TextOut method. TextOut requires
three parameters when called: the X
and Y pixel co-ordinates for placing

the text string, and the text string itself. A simple call is
shown in Figure 3.

The power of the TextOut method lies in its ability to pre-
cisely place the output at a desired location on the docu-
ment, through the X and Y coordinates. Consider the
placement of a centered report title. To supply the proper
starting location to the TextOut method, the developer
must do some simple calculating within — or before —
the call. Figure 4 shows a snippet for centering text on the
applicable printer.

To determine the center of the canvas as defined by the print-
er interface, the PageWidth property is queried. This property
contains the width of the page measured in pixels. This value
is divided in half to determine the approximate center line of
the page. A pair of subcalculations provides the center of the
text string. The TextWidth method of the canvas provides the
width, in pixels, of the string data passed to it.

In the example, the function is passed a single character, and
returns a base-width value per character to use as a basis for
computing the length of a full line of text. The base value is
then multiplied by half the number of characters in the text line
to be printed. This equation returns a factor in pixels which,
when subtracted from the center point of the canvas, gives a
starting point to the X parameter of the TextOut method.

Computing the Line Height
Utilizing the TextOut method with dynamic parameters —
to specify the text placement on multiple planes — takes

 job.

 printer, indicating
ther to collate.
e to select the

rinters property.
indows.

 BeginDoc method
een called.
anager.

var
OutFile : TextFile;

begin
AssignPrn(OutFile);

Rewrite(OutFile);

Writeln(OutFile,'This is a print line');

CloseFile(OutFile);

end;

Figure 6: The Write and Writeln methods handle many printing
details (e.g. streaming and wrapping) for you.

{ Get vertical pixels per inch }
VPixelsPerInch := GetDeviceCaps(Printer.Handle,LOGPIXELSY);

{ Set line spacing 1/10 of vertical pixels per inch }
VLineSpacing := VPixelsPerInch div 10;

{ Set the Line Height }
LineHeight := Printer.Canvas.TextHeight('A') +

VLineSpacing;

Figure 5: Determining the height of the text lines.

Delphi Reports
still more work on the part of the developer. To print multi-
ple lines along the Y axis of the page, the developer must
compute the line height of the applicable font, add some
spacing between the printed lines, and maintain a sum of
printed lines so the end of the page is not overwritten and
output is not lost. The first step in this process is to retrieve
a measure of the resolution in pixels per inch, using the fol-
lowing API call:

GetDeviceCaps(Printer.Handle,LOGPIXELSY);

LOGPIXELSY will return an integer value that represents the
number of pixels along an inch of the display height. This
value is then used in an algorithmic computation of the line
placement. The code snippet in Figure 5 shows the sequence
of calls needed to determine the height of the text lines.

The total line height is measured as the sum of the number of
pixels in VLineSpacing, plus the number of pixels returned from
the TextHeight call. Note that the divisor value used in the
computation of VLineSpacing (10) is arbitrary, and must be
adjusted as necessary for the specific application. As with the
TextWidth call used earlier, the Canvas method, TextHeight,
considers the metrics of the font currently in use — an impor-
tant factor in outputting to various printers.

Determining Page Breaks
Querying the PageHeight property of the canvas provides the
total pixel height of the page. The number returned is the total
against which the accumulated printed lines are measured, to
determine when a page break is required. The TPrinter object
provides a method called NewPage, which forces the canvas to
send its current output to the printer and begin printing on a
new canvas. This method will handle the canvas itself, resetting
its Pen position to 0,0, and incrementing the page number. The
developer must reset all the print variables, such as
LinesPrinted, within the application.

Printing from Tables
Simply formatted data-table listings and other columnar
reports can be quickly handled through manual means, as well.
Aside from the controlling loop that steps through the items in
the table, the only additional computations necessary for plac-
ing the output on the canvas are those that determine the start-
ing point for each column on an output line. Listing One, on
page 23, shows the basic code needed for printing data items
from a table.

Placement of the columns is by pixel across the X plane, much as
the line is printed on the Y axis of the canvas. The columns in
the example are placed by adding each field’s DisplayWidth prop-
22 November 1997 Delphi Informant
erty to the accumulated pixels used on the line. The X parameter
is constrained by the PageWidth property of the Printer object.

Printer Peculiarities
While most methods from the Form object canvas will work on
the Printer canvas, there are some important differences. The
printer is a mechanical entity with a unique set of exceptions
that must be handled by the developer. The items most likely to
trip up the programmer are mechanical errors generated by the
printer. The program calling the Printer object directly will be
responsible for handling “out of paper” or “printer not online”
errors gracefully. Calls to the Printer methods should be
enclosed within a resource-protection (try..finally) block, so that
all resources are released, and all exceptions are handled.

Exception handling aside, the output capabilities of the two
devices must be considered by the developer. Because the user
will be running Windows, the developer is guaranteed that
graphics can be displayed on the screen. There is no guarantee
however, that the printer selected is capable of reproducing
them. Text and graphics sent to the screen can be erased; out-
put to the printer canvas is sent to the printer, and cannot be
recalled. Therefore, the user should be given the option of
printing graphics or leaving them out, based on the capabili-
ties of the chosen printer.

Finally, drawing to the screen canvas is instantaneous, while
drawing to the printer canvas is not. Sending output to the
printer is slow, so the developer should always provide the
ability to abort a print process. For this reason, the TPrinter
object provides the Abort method.

Tools for the Job
Using the TextOut method gives the developer precise control
over the placement of text on the canvas, right down to the
pixel. This power takes a heavy toll in programming overhead
and exception handling, and might be overkill if the output
is, for instance, a couple of lines on an exception report.
Simplifying the print process, Delphi allows the developer to
assign a print file to the printer, then use the Write and
Writeln functions to stream output to the file. All the line siz-
ing is handled by the system, and lines that extend beyond
the limits of the printer’s page width are automatically
wrapped. Figure 6 shows an example of this use.

The AssignPrn procedure assigns a text-file variable — in this
case, OutFile — to the printer. The Pascal procedure Rewrite

Delphi Reports

Begin Listing One — Printing from a table
begin
Printer.BeginDoc;

Table1.First;

while not Table1.EOF do begin
if LinesPrinted < Printer.PageHeight then
begin
NextCol := 10;

Printer.Canvas.Textout(NextCol,LinesPrinted,

Table1.FieldByName('CUSTNO').AsString);

NextCol := NextCol + (

Table1.FieldByName('CUSTNO').DisplayWidth *

Printer.Canvas.TextWidth('A'));

Printer.Canvas.Textout(NextCol, LinesPrinted,

Table1.FieldByName('COMPANY').AsString);

NextCol := NextCol +

(Table1.FieldByName('COMPANY').DisplayWidth *

Printer.Canvas.TextWidth('A'));

Printer.Canvas.Textout(NextCol,LinesPrinted,

Table1.FieldByName('COUNTRY').AsString);

Table1.Next;

LinesPrinted := LinesPrinted + LineHeight;

end
else
begin
Printer.NewPage;

LinesPrinted := 0;

PrintTimeStamp;

PrintHeading;

end;
end;

Printer.EndDoc;

end;

End Listing One
must be called to create a new output file. Once the output
file has been created, the Write and Writeln procedures are
used to send the output text to the file name.

Our discussion ends with the least-powerful technique. By
calling the Print method of a Form object, the entire form
canvas is sent to the currently selected Windows printer.
The layout is then in control of the form’s canvas; the
amount of data that can be output is constrained by the
size of the form.

Conclusion
Each of the techniques presented has trade-offs that must be
weighed by the developer when considering the best way to
produce printed output for the user. The most basic consid-
eration regarding any of these is the amount of program-
ming needed to provide the user with the fastest method of
receiving output. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\NOV\DI9711WR.

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO software
development company specializing in database-management software. The compa-
ny has served its customers since 1987. Warren also teaches programming, hard-
ware architecture, and database management at the college level. He can be
reached by e-mail at wrachele@earthlink.net, or by telephone at (303) 674-8095.
23 November 1997 Delphi Informant

24 November 1997 Delphi Informant

The API Calls
BDE API / Delphi

By Bill Todd

{ Given a BDE
error messa

function dgGe

ErrCode: Db

var
EngineMsg:

EngineMsgPt

begin
EngineMsgPt

DbiGetError

Result := St

end;

Figure 1: Gett

{ Given a BDE
error messa

function dgGe

ErrCode: Db

var
EngineMsg:

begin
DbiGetErrorS

Result := E

end;

Figure 2: Cast
Using the BDE API
Part I: Mastering the Direct Approach

Although much of the Borland Database Engine’s API is surfaced in Delphi,
some useful tools still are available only by calling the API directly. In this

two-part series, I’ll examine some of these and their table-related features.

g
t

i

a
r

r

S

in

g
t

i

s

n

i

There are two ways to call a BDE API func-
tion: You can use the BDE session created
automatically by any Delphi program that
uses data-access components, or you can
create your own session using BDE API
calls. Because the first option is easier, the
examples presented here will use that tech-
nique; the next installment will address the
second option.

BDE Error Messages
One thing all BDE API functions have in
common is that they return a numeric result
code of type DbiResult, which indicates
whether the function was successful. If the
value DBIERR_NONE is returned, no error
occurred; any other returned value is an error
code. You can obtain the message that corre-
error code, return the corresponding
e as a Pascal string. }
EngineErrorMessage(

Result): string;

rray[1..255] of Char;

: PChar;

 := @EngineMsg;

tring(ErrCode, EngineMsgPtr);

rPas(EngineMsgPtr);

g BDE error messages.

error code, returns the corresponding
e as a Pascal string.}
EngineErrorMessage(

Result): string;

tring;

tring(ErrCode, PChar(EngineMsg));

gineMsg;

ng to PChar.
sponds to any error code by calling
DbiGetErrorString, as shown in Figure 1.

You can code this function more simply in
Delphi 3 by taking advantage of the compat-
ibility between null-terminated strings and
the new long string type, as shown in Figure
2. (The Figure 1 version works in Delphi 1,
2, and 3.) To take advantage of Delphi’s
exception-handling mechanism, call BDE
API functions by passing them as parameters
to the Check procedure; for example:

Check(DbiGetErrorString(ErrCode,

PChar(EngineMsg)));

The Check procedure raises an exception if
the API function returns an error.

Packing dBASE Tables
dBASE tables need to be packed periodically
because deleting a record from a dBASE table
doesn’t really delete it; it merely flags the record
for deletion. The record is not physically delet-
ed from the table, and the space it occupies
cannot be reused until the table is packed.

The following procedure will pack a dBASE
table. To use this procedure, you must have a
Database component and a Table component
on the form. Set the Database component to
point to the directory that contains the table
you want to pack by setting its AliasName
property to an alias that points to the direc-
tory, or by setting the Path parameter in the
Params property to the directory’s path. Do
this by adding an entry to the Params prop-
erty, using the String List Editor:

Path=c:\mytables

{ Pack a dBASE table by calling DbiPackTable. The table
passed as a parameter will be opened if it isn't open. }

function dgPackDbaseTable(Tbl: TTable): DBIResult;

begin
Result := DBIERR_NA;

if Tbl.Active = False then
Tbl.Open;

Result := DbiPackTable(Tbl.DBHandle, Tbl.Handle,

nil, nil, True);
end;

Figure 3: Packing a dBASE table.

function dgPackParadoxTable(Tbl: TTable;

Db: TDatabase):DBIResult;

{ Packs a Paradox table by calling the BDE DbiDoRestructure
function. The TTable passed as the first parameter must
be closed. The TDatabase passed as the second parameter
must be connected. }

var
TblDesc: CRTblDesc;

begin
Result := DBIERR_NA;

FillChar(TblDesc, SizeOf(CRTblDesc), 0);

StrPCopy(TblDesc.szTblName, Tbl.TableName);

TblDesc.bPack := True;

Result := DbiDoRestructure(Db.Handle, 1, @TblDesc,

nil, nil, nil, False);
end;

Figure 4: Packing a Paradox table.

The API Calls
Set the Database component’s DatabaseName property to the
value you want to use for the temporary alias that the Database
creates. Next, set the Table component’s DatabaseName to the
same value you used for the Database component’s
DatabaseName. Set the Table’s Exclusive property to True,
and its TableName to the name of the table you want to
pack. If the Table is connected to a DataSource, call its
DisableControls method.

To pack the table, call the dgPackDbaseTable function shown in
Figure 3. Pass as the parameter the Table component for the
table you want to pack. In Delphi 1, the DbiProcs, DbiTypes,
and DbiErrs units must be included in the uses clause of the
unit that contains the dgPackDbaseTable function. In Delphi 3,
the BDE unit must be included in the uses clause. The func-
tion opens the table if it isn’t already, then packs it by calling
the BDE API function DbiPackTable.

The first parameter of DbiPackTable is a BDE handle to the
database that contains the table. This is surfaced as the
DBHandle property of TTable. The second parameter is the
BDE handle to the table itself, which is surfaced in Delphi as
the Handle property of TTable.

The third and fourth parameters — table name and driver type,
respectively — provide an alternate way to identify the table if it
isn’t open. The table name can include a full path. If not, the
location is assumed to be the database that DBHandle (the first
parameter) points to. The only valid driver type is szDbase, and
you can omit the driver type if the table name includes the .DBF
file extension.

The fifth and final parameter specifies whether the table’s
indices should be rebuilt; it should be set to True.
25 November 1997 Delphi Informant
Packing Paradox Tables
Paradox tables do not normally need to be packed because
deleting a record from a Paradox table makes the space avail-
able for any new record. However, there still may be cases
when you want to pack a Paradox table — when a large frac-
tion of the records in the table are deleted, for instance. This
might occur in a table where most of the records are moved
to an archive at the end of each year. In this case, packing
will reduce the size of the table on disk, and compress and
rebalance the indices for faster access.

The function in Figure 4 requires two parameters. The first is
the Table component that contains the table’s name, and whose
Exclusive property must be set to True. The second parameter is
the Database component connected to the database that con-
tains the table you want to pack.

When you use BDE API calls to work with Paradox tables, a
table-descriptor structure is used to pass information to the
BDE about the table and what you want to do to it. The call
to FillChar initializes the table descriptor by filling it with
binary zeros. The next line copies the name of the table from
the Table’s TableName property to the table descriptor’s
szTblName field, as a null-terminated string. The following
statement sets the table descriptor’s bPack field to True to
inform the BDE to pack the table.

Finally, DbiDoRestructure is called to pack the table. The first
parameter to DbiDoRestructure is the BDE database handle
provided by the Handle property of the Database component.
The second parameter is the number of table descriptors, and
must always be set to 1. The third parameter is a pointer to the
table descriptor. Note the use of the @ sign to specify the address
of the table descriptor. The fourth parameter is the new name for
the restructured table. If you provide a name, the restructured
table is saved with it; the original table is not changed.

The fifth and sixth parameters are the names of the key-
violation and problems tables, respectively. These tables are
not used when the only operation to perform is packing
the table. The sixth parameter isn’t used for anything in the
current version of the BDE; it’s a Boolean parameter, and
should be set to False.

Table Pathfinding
If a table uses a permanent BDE alias, you can obtain its
path easily using the GetAliasParams method of TSession (see
Figure 5). However, GetAliasParams will not work if the
alias is a temporary one created by a TDatabase, or if it’s
hard-coded in the DatabaseName property. The function in
Figure 6 uses BDE API calls, and works in both these situa-
tions, as well as with a table whose BDE alias is permanent.

The call to AnsiToNative translates the table’s TableName
property to the local BDE character set, and converts it to a
null-terminated string. DbiGetCursorProps fills the
CURProps structure with a variety of properties about the
cursor. For a complete list of the properties returned, see the
DbiGetCursorProps function in the BDE API online Help

The API Calls
(C:\Program Files\Borland\Common Files\BDE\Bde32.hlp
by default). The call to DbiFormFullName gets the full path
to the table, including the table name. The last statement
converts the full table name to a Pascal string, and extracts
the path portion returned by the function.
26 November 1997 Delphi Informant

{ Returns the path for the alias passed in AliasName.
This must be an alias that points to a subdirectory.
This function does not verify that the alias points
to a subdirectory. }

function dgGetAliasPath(var Session: TSession;

const AliasName: string): string;
var

AliasParams: TStringList;

begin
Result := '';

AliasParams := TStringList.Create;

with Session do
try
GetAliasParams(AliasName, AliasParams);

Result := UpperCase(AliasParams.Values['PATH'])+'\';

finally
AliasParams.Free;

end;
end;

Figure 5: Getting the alias path.

function dgGetDatabasePath(ATable: TTable): string;
var
TblProps: CURProps;

pTblName, pFullName: DBITblName;

begin
with ATable do begin
AnsiToNative(Locale, TableName, pTblName, 255);

Check(DbiGetCursorProps(Handle, TblProps));

Check(DbiFormFullName(

DBHandle, pTblName, TblProps.szTableType,

pFullName));

Result := ExtractFilePath(StrPas(pFullName));

end;
end;

Figure 6: Getting the path for any alias.

{ Copy a table to the same or different directory. Local
table names can include a path, so you can copy tables
from one directory to another. Server tables can be
copied only within a database.

Parameters:
Database: TDatabase connected to source db.
SourceTblName: Source table name.
DestTblName: Destination table name.
Overwrite: Overwrite destination if True. }

procedure dgCopyTable(Database: TDatabase;

SourceTblName, DestTblName: string; Overwrite: Boolean);
var
pSrcTblName,

pDestTblName: DBITBLNAME;

begin
AnsiToNative(Database.Locale, SourceTblName, pSrcTblName,

DBIMAXPATHLEN);

AnsiToNative(Database.Locale, DestTblName,

pDestTblName, DBIMAXPATHLEN);

Check(DbiCopyTable(

Database.handle, { Database handle. }
Overwrite, { Overwrite destination table. }
pSrcTblName, { Source table path & name. }
nil, { Table type. }
pDestTblName)); { Destination table path & name. }

end;

Figure 7: Copying a table.
Copying Tables
Although you can copy local tables using the Delphi
BatchMove component, this technique has a major disadvan-
tage in that only the data is copied. Indices are not copied,
and in the case of Paradox tables, neither is the .VAL file that
contains the validity checks and referential-integrity defini-
tions. The dgCopyTable procedure in Figure 7 will copy a local
table, including its “family” (indices and .VAL file), to the
same or a different directory. This procedure will also copy
server tables, but only within a single database.

This procedure begins by converting the source and desti-
nation table names to null-terminated strings, and also to
the BDE’s character set, by calling AnsiToNative. Next,
DbiCopyTable is called to actually copy the table. In this
call, the table’s type parameter is set to nil; therefore, the
names of local tables must include file extensions.

Network Usernames
If you need the user’s network username, use the BDE API
function DbiGetNetUserName, as shown in Figure 8.

Regenerating Indices
Regenerating a non-maintained index brings it up to date, so it
includes all the data in the table. Regenerating both maintained
and non-maintained indices compacts and balances them for
best performance. You regenerate all of the indices associated
with a Paradox or dBASE table calling DbiRegenIndexes:

DbiRegenIndexes(Table.Handle)

The parameter is the Handle property of the Table component.
The table must be opened for exclusive use. For dBASE tables,
all open indices are regenerated. For Paradox tables, both main-
tained and non-maintained indices are regenerated. You can
also regenerate a single index using DbiRegenIndex, as
described in BDE online Help.

Group Record Deletion in Paradox Tables
Although this section’s subhead refers to deleting records, the
techniques shown here also apply to changing existing
records. To understand how to work with groups of records
safely, you need to understand a little about the Paradox
record-locking mechanism. The BDE uses the information
stored in separate lock files on disk (files with the .LCK
extension) to control which records are locked in Paradox
tables; however, it uses the file-locking mechanism built into
the operating system to lock the appropriate section of the
{ Return the network username. }
function dgGetUserName: string;
var

UserNameBuff: array[0..255] of Char;

pUserName: PChar;

begin
Result := '';

pUserName := @UserNameBuff;

Check(DbiGetNetUserName(pUserName));

Result := StrPas(pUserName);

end;

Figure 8: Getting the network username.

with Table do begin
{ Lock the lock file and initialize the flag variable. }
NoLocks := True;

DbiBeginBatch(Handle);

{ See if any records are locked. }
while not EOF do begin
try
Edit;

except
begin
Ok := False;

Break;

end;
end;
Next;

end;

{ If no records are locked, delete the records. }
if NoLocks then

begin
First;

while not EOF do
Delete;

end;

{ Unlock the lock file. }
DbiEndBatch(Handle);

end;

Figure 10: Deleting a group of records.

procedure dgLoadBdeBatchFunctions;

begin
Idapi := LoadLibrary('IDAPI32.DLL');

if Idapi = 0 then
ShowMessage('IDAPI32.DLL Load Error' + IntToStr(Idapi))

else
begin
@DbiBeginBatch :=

GetProcAddress(Idapi, 'DbiBeginBatch');

@DbiEndBatch := GetProcAddress(Idapi, 'DbiEndBatch');

end;
end;

Figure 9: Getting the function handles.

The API Calls
lock file when a record lock must be placed or released.
Thus, the sequence of events to lock a record is:
1) lock the lock file
2) write the lock information to the lock file
3) unlock the lock file

Processing many records involves a lot of overhead; two
operating-system calls are required to place each record
lock, and two more are required for release. Clearly, it
would be more efficient to lock the lock file once, place
and release all record locks, then unlock the lock file.
Fortunately, you can do exactly that, but you must do it
with great care. No other user can place or release a lock
while you have the lock file locked. If another user tries,
his or her machine will appear to “hang” while it waits for
access to the lock file. This can cause network timeout
errors, or — worse — prompt impatient users to reboot
their machines. If you use this technique, make sure you
hold the lock on the lock file for only a short time; a good
maximum is two seconds.

Now that we’ve covered the benefits and dangers of locking
the lock file, let’s look at how to do it. Controlling access
to the lock file is done with two undocumented BDE API
calls: DbiBeginBatch and DbiEndBatch. Normally, using
undocumented calls is dangerous because they may not be
supported in future versions, or may have bugs. However,
because the BDE itself makes extensive use of these calls,
and because they’ve been surfaced for developer use in
Paradox, they should be safe to use. Both these functions
take TTable’s Handle property as their only parameter.

You must take one extra step to use these calls; because
they’re undocumented in Delphi, they’re not included in the
BDE interface unit. Therefore, you must dynamically load
the IDAPI32.DLL, and get the address of these functions.
The first step in this process is to declare the global variables
in the unit that will call these functions:

var
Idapi: THandle;

DbiBeginBatch: function(hCur: hDBICur):
DbiResult stdcall;

DbiEndBatch: function(hCur: hDBICur): DbiResult stdcall;

The first declaration, Idapi, declares a handle for
IDAPI32.DLL. The next two statements declare procedural
variables that will hold the addresses of the two functions.
27 November 1997 Delphi Informant
Next, you need a procedure to load the DLL and get the
function addresses via the Windows API LoadLibrary and
GetProcAddress functions (see Figure 9). This procedure
begins by getting a handle to the DLL, then gets the
addresses of the functions by calling GetProcAddress. You
should call this function once when your main form, or the
form that uses these functions, is created.

When the form is destroyed, call:

FreeLibrary(Idapi);

to release the DLL. Because the IDAPI32.DLL was loaded
into memory when your program’s default BDE session
was initialized, the call to LoadLibrary simply obtains a
handle to the DLL and increments its use count, rather
than reloading it. Likewise, the call to FreeLibrary simply
decrements the DLL’s use count. Windows takes care of
unloading the DLL from memory when its use count
reaches zero, which happens when all programs that are
using the DLL have terminated.

Suppose you need to delete a group of records from a table.
You must delete all the records, or none of them. That
means you must make sure none of the records are locked
before you attempt to delete them, and you must prevent
other users from locking any of them until you are finished
deleting. First, use SetRange to restrict your view of the table
to just those records that you want to delete. The code in
Figure 10 will delete all or none of the records. This code
begins by setting the Boolean variable NoLocks to True, then
calling DbiBeginBatch to lock the lock file. The while loop
attempts to lock each record inside a try..except block. If
another user has the record locked, Delphi will raise an

initialization

begin
{ Initialize the BDE. }
Check(DbiInit(nil));
try
{ Open; get a handle to the alias list. }
Check(DbiOpenDatabaseList(TmpCursor));

AliasFound := False;

repeat
{ Get a DBDesc record for the next alias. }
rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK,

@Database, nil);
if (rslt <> DBIERR_EOF) then
if StrPas(Database.szName) = 'DWTAlias' then

begin
{ The alias DWTAlias already exists. }
AliasFound := True;

Break

end;
until rslt <> DBIERR_NONE;

{ Release the handler. }
Check(DbiCloseCursor(TmpCursor));

if not AliasFound then
{ If the alias was not found, add it to IDAPI.CFG. }
Check(DbiAddAlias(nil, PChar('DWTAlias'), nil, PChar(
'PATH:' + ExtractFilePath(Application.ExeName)),

True))

finally
DbiExit;

end;

Figure 11: Creating a permanent alias.

The API Calls
exception; the code in the try..except block will be executed
to set NoLocks to False, and break out of the while loop. If
all the records can be locked, the code in the if NoLocks...
statement deletes them. Finally, the call to DbiEndBatch
releases the lock on the lock file.

If you use this technique to change records instead of delete
them, make sure you post the last record to release its lock
before calling DbiEndBatch. This technique can be used to
lock any group of records in a table for a short time.

Creating Permanent Aliases
In Delphi 2 and 3, you can create a new permanent alias
by using TSession’s AddAlias and SaveConfigFile methods
(these are not available in Delphi 1). When you create an
alias using BDE API calls, you may also encounter a timing
problem because the BDE reads its configuration file once
when a session is opened. Therefore, for an alias to be used
by the program that creates it, you must create the alias
before the program’s default BDE session is opened.

When a Delphi program begins execution, the first code
that runs is the initialization section of the main form.
Any code you place in the main form’s initialization sec-
tion will run before the program’s default BDE session is
opened so it’s the perfect place to create an alias. How-
ever, creating an alias before the default BDE session is
opened means you must create your own BDE session,
then create the alias and close your session. The code from
the initialization section of the main form’s unit (see
Figure 11) does just that. The variable declarations that
28 November 1997 Delphi Informant
follow are included in the main form’s unit, and are used
by the code that creates the alias:

var
Database: DBDesc;

rslt: DbiResult;

TmpCursor: hDbiCur;

i: Integer;

AliasFound: Boolean;

The code in Figure 11 begins with a call to DbiInit, the
function that opens a BDE session. It takes a single option-
al parameter: a pointer to a structure that lets you specify
the working directory path to the BDE configuration file
and language driver. Defaults exist for all these values, and
the parameter is optional; so in this code, nil is passed.

Next you need to ensure that the alias you want to add does
not exist. The call to DbiOpenDatabaseList opens a cursor
to the alias list in the BDE configuration file. Next comes a
repeat loop that iterates through the alias list looking for
the alias name you want to add — “DWTAlias” in this case.
The key code is the call to DbiGetNextRecord. This reads
the record for the next alias into the Database variable, and
saves the return code in the variable rslt. If rslt is equal to
DBIERR_EOF, you’ve reached the end of the alias list.
Next, the alias name is extracted from the Database struc-
ture, converted to a Pascal string, and compared to the alias
to be added. If the alias is found, the flag variable
AliasFound is set to True, and the repeat loop is exited.
Once the repeat loop has finished, DbiCloseCursor is
called to close the cursor to the alias list.

The call to DbiAddAlias adds the new alias. The first
parameter identifies the BDE configuration file to be used,
and must be null. Only the configuration file for the cur-
rent BDE session can be modified. The second parameter
is the name of the new alias. The third parameter is the
driver type. If this parameter is nil, the standard drive is
assumed.

The fourth parameter is a string containing all the para-
meters required for the driver type specified in the third
parameter. For the standard driver, the only parameter is
the path to the database. In this example, the path is set to
the directory that contains the program’s .EXE file. If you
plan to add an alias to a database server, see the examples
in the BDE online Help file for the structure of the para-
meter’s string.

The fifth and final parameter is a Boolean that indicates
whether the new alias should be saved in the BDE config-
uration file for use in future sessions, or whether it’s a
temporary alias for this session only. Set this parameter to
True to save the alias. Finally, DbiExit is called to close the
BDE session.

More to Come
There’s much left to cover, but we can absorb only so
much at one sitting. Next month’s installment will explore

The API Calls
the use of Paradox tables with read-only media, using per-
sistent locks as semaphores, sorting local tables, and much
more. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\NOV\DI9711BT.

Bill Todd is President of The Database Group, Inc., a Phoenix-area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Creating Paradox for Windows Applications [New Riders
Publishing, 1994], and Paradox for Windows Power Programming [QUE,
1995]; a contributing editor of Delphi Informant; a member of Team Borland;
and a speaker at every Borland Developers Conference. He can be reached at
(602) 802-0178, or on CompuServe at 71333,2146.
29 November 1997 Delphi Informant

At Your Fingertips

By Robert Vivrette

Figure 1: Th

30 November 1997 Delphi Informant
Disassembly View Revealed
Plus, Outsmarting Screen Savers, Registry Tricks,
and Other Useful Tips

When Delphi 2 was released, Borland had a little secret. Those who knew
were threatened 50 lashes with a wet noodle if they told. The secret was

an Easter egg in the form of a window that showed disassembled code (i.e. the
assembly-language code generated by the Delphi compiler). Borland didn’t
make the Disassembly View window common knowledge, because it was a bit
experimental and had a few small visual bugs.
Delphi 3 contained an even fancier multi-
pane version, but Borland was still main-
taining secrecy. Rats! The pressure had been
killing me for over a year now; that is, until
I saw a reference on Borland’s Web site
about how to turn on this viewer. With the
cat apparently out of the bag and the wet-
noodle threat removed, I bring you … the
Disassembly View! Simply open RegEdit
and go to the following key:

HKEY_CURRENT_USER\Software\Borland\Delphi\

3.0\Debugging

Add the name EnableCPU at that location,
and set its value to 1 (a single-character
string just like the other settings in that
key). When you next launch Delphi, a CPU

Window option will have been added to the
View menu. (This also works in Delphi 2,
with a “...\2.0\Debugging” subkey.)
e undocumented Delphi 3 Disassembly View.
The Disassembly View shows valid information
only at run time. When you stop your program
at a break point, it will show you the current
statement, and the assembly code associated
with that line. It will also show the contents of
the registers, and other cool things. Figure 1
shows the Disassembly View in Delphi 3.

Be forewarned: The Disassembly View still
has a few minor visual bugs, though these
don’t diminish its value.

Nix on the Screen Saver
Screen savers have established their place in
the Windows world. Ostensibly developed for
protecting against screen burn-in, they’ve
become vehicles for amusement and self-
expression. Over the last year or two, more
elaborate, resource-hungry screen savers, such
as PointCast’s SmartScreen, have come onto
the scene. Instead of dancing graphics, they
display custom news stories, stock prices,
weather updates, and other information
obtained from the Internet. Unfortunately, if a
screen saver activates during certain processor-
or time-intensive operations, your application
could be robbed of precious resources. And
equipping an application against such inter-
ruptions can be a programming challenge.

Fortunately, there is a little-known technique
for holding a screen saver at bay. When
Windows tries to activate a screen saver, it
first broadcasts an SC_ScreenSave message to
all running applications. If any of these set
this message’s Result field to -1, the screen

procedure TForm1.WMGetMinMaxInfo(

var Message: TWMGetMinMaxInfo);
begin
with Message.MinMaxInfo^ do begin
// Minimum dimensions of form (width/height).
ptMinTrackSize := Point(200,100);

// Position (top/left) of form when maximized.
ptMaxPosition := Point(50,50);

// Dimensions of form when maximized (width/height).
ptMaxSize := Point(400,200);

end;
Message.Result := 0;

inherited;
end;

Figure 3: The handler for form resizing.

procedure TForm1.WMEndSession(var Message: TWMEndSession);
var

Reg : TRegistry;

begin
Reg := TRegistry.Create;

try
Reg.RootKey := HKEY_CURRENT_USER;

if Reg.OpenKey('\Software\Microsoft\Windows\' +

'CurrentVersion\RunOnce',True) then
Reg.WriteString('MyApp','"' + ParamStr(0) + '"');

finally
Reg.CloseKey;

Reg.Free;

inherited;
end;

end;

Figure 2: The handler for application relaunch.

At Your FingertipsAt Your Fingertips
saver will not activate. Therefore, all you need to do is add a
declaration for WMSysCommand in the private section of
your main form:

private
procedure WMSysCommand(var Msg: TWMSysCommand);

message WM_SYSCOMMAND;

Then, in the implementation section, add the following handler:

procedure TForm1.WMSysCommand(var Msg: TWMSysCommand);

begin
if Msg.cmdType = SC_ScreenSave then

Msg.Result := -1

else
inherited;

end;

Now, when the screen saver attempts to blast off, your main
form can catch the message — and scrub the launch.

Relaunching an Application at Start Up
Have you ever noticed that when you shut down Win95 and
leave an Explorer window open, it reappears the next time
you start up? Explorer is really just a program running under
Windows, so what tells it to relaunch?

The answer is a simple technique that can be applied, not
just to Explorer, but to any application. Win95 monitors a
registry key named RunOnce, which it checks at start-up
for any applications that must be launched. It simply looks
through all name/value pairs under that key, then launches
each application it finds. After it’s done, it deletes all
entries from the RunOnce key. The complete location of
this key is:

HKEY_CURRENT_USER\Software\Microsoft\

Windows\CurrentVersion\RunOnce

You need only pick a good time to write a value. Because
this key relates to shutting down Windows, Microsoft rec-
ommends adding this value when the application detects a
WM_ENDSESSION message. Simply add this message-
handler declaration to the private section of your main form:

private
procedure WMEndSession(var Msg: TWMEndSession);

message WM_ENDSESSION;
31 November 1997 Delphi Informant
Then, in the implementation section, add the handler shown
in Figure 2. The name/value pair written to the registry key
defines the application to launch. The “name” portion of that
pair is just a unique identifier for that application (in this
case, MyApp). It can be anything, as long as it’s unique among
the keys. (Otherwise you’d write over them, wouldn’t you?)
The value portion is ParamStr(0) with quotes added on
both sides. The ParamStr function returns individual parame-
ters from the command line when an application is launched.
ParamStr(0) is the name and path of the application itself,
i.e. C:\Borland\Delphi 3\Project1.exe.

When Windows starts, it recognizes this entry and launches
your application. Of course, what your application does at
that point is up to you. If it’s a document-based application
(such as a word processor), you could provide the name of
the file after the name of the application, then have your pro-
gram extract that value and retrieve the document when it
starts. It could also read saved values from the registry.

You can also make the application run each time Windows
starts by writing the name/value pair into the Run key
instead of the RunOnce key. The only difference is that
Windows does not delete entries from the Run key, as it
does for RunOnce. You can also use the RootKey of
HKEY_LOCAL_MACHINE, so the same Run and
RunOnce items will execute regardless of who logs on.

Controlling Form Resizing
Many Delphi programmers have learned you can control the
minimum width and height of a form by adding a message
handler that intercepts the WM_GETMINMAXINFO mes-
sage. Whenever a user attempts to resize a form, Windows
sends this message. The form then has the opportunity to
provide data about sizing limitations.

A lesser-known trick is to control where a form resizes when you
maximize it. This technique is used in the Delphi IDE. When
you maximize Delphi, the panel with the menus, Component
palette, and speed buttons is snugged up to the top of the screen.

You can do three things with WM_GETMINMAXINFO:
Specify the minimum width and height of the form when
resizing by setting the ptMinTrackSize field of the message.

At Your Fingertips
Specify the top/left position of a form when it’s maxi-
mized by setting the ptMaxPosition field.
Specify the maximum width and height of a form when
it’s maximized by setting the ptMaxSize field.

To intercept this message, put a message handler in the private
section of your form declaration, like this:

private
procedure WMGetMinMaxInfo(var Message: TWMGetMinMaxInfo);
message WM_GETMINMAXINFO;

Then add a message handler such as that shown in Figure 3.
You wouldn’t often set all three of these at once, but you can;
I used all three to demonstrate their formats. ∆

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.
32 November 1997 Delphi Informant

33 November 1997 Delphi Informant

Op Tech
Delphi 3 / COM

By Ron Mashrouteh

Figure 1: The
Multi-Tier Development
Building a Remote Server Application with Delphi 3

In Delphi 1 and 2, developing three-tier applications isn’t especially easy. In
Delphi 3, however, Borland has done a fabulous job of enabling applications

to communicate with each other through COM and DCOM. Delphi 3 features a
new type, interface, which is specified with the new interface keyword.
Interfaces are the building blocks of COM. They are groups of semantically
related routines through which COM objects communicate.
This article will provide an overview of
multi-tier development, and demonstrate
how to develop a simple database application
using this technology. We’ll focus on develop-
ing a server application and a client applica-
tion that can communicate with each other
through interfaces. We will also look into
parameterized queries and stored procedures.
(A discussion of COM and DCOM is out-
side the scope of this article. For an introduc-
tion to the topic, refer to Danny Thorpe’s
article, “Delphi 3: The ActiveX Foundry,” in

the May 1997 Delphi Informant.)
 New Items dialog box.
One of the key features in developing multi-
tier applications is a remote data module
(RDM); you’ll create one in this article.
RDM is new to Delphi 3 Client/Server Suite,
and is an integral part of remote server appli-
cations. The RDM is a repository that main-
tains all database components and process
requests from client machines.

The Server Application
First, let’s develop our server application:
Launch Delphi 3 and open a new application
if one isn’t opened automatically. Save Unit1
as uServer.pas, and the project as
RemoteServer.dpr. Using the Object
Inspector, change the form’s Name property
to fmServer. Select File | New to display the
New Items dialog box. Select the New tab,
click on the Remote Data Module icon, and
press OK (see Figure 1). When the Remote
Dataset Wizard appears, enter MyServer in
the Class Name edit box. By default,
Instancing is set to Multiple Instance; this
allows more than one client application to
talk to the server simultaneously. Leave this
setting as is, and press OK (see Figure 2).
Select File | Save and save this unit as
uRDM.pas. From the Data Access page on
the Component palette, select a Query com-
ponent and a Provider component, and place

Figure 2: The Remote Dataset Wizard.

Figure 3: The Project Manager.

Op Tech

Figure 4: A portion of the RemoteServer_TLB unit.

Figure 5: The Type Library window.
them on the MyServer form. Select the Query1 component
and change its DatabaseName property to DBDEMOS (a sample
database that ships with Delphi). Select Provider1 and set its
DataSet property to Query1.

If you select View | Project Manager, you’ll notice that
Delphi has automatically created a Type Library file,
RemoteServer_TLB.pas (see Figure 3). This unit declares
all interfaces for our server application. It contains types
and numbering schemes new in Delphi 3 (see Figure 4);
e.g. the long numbers are the interface identifiers automati-
cally generated by Delphi, and are of the new type GUID
(globally unique identifier). The GUID for our server
application allows only applications that refer to it specifi-
cally to establish communication. These GUIDs are also
automatically registered in the Windows registry. So, as
usual, Delphi 3 takes care of many programming chores
behind the scenes that would otherwise take a significant
amount of developers’ time.

As mentioned, Delphi 3 has a new interface type. As its
name implies, this type provides us with a mechanism for
communicating with other applications — in this case, the
client application with the server. Interface types defined in
a type library are “automation safe”; i.e. derived from
IDispatch and containing only OLE automation-compatible
types. OLE types are declared as OleVariant, WideString,
WordBool, etc. We’ll use the OleVariant type as we develop
our client application. Now we need to implement the
interface types of our server application so our client appli-
cation can see our data-aware component, Query1, in the
MyServer remote data module.
34 November 1997 Delphi Informant
The Type Library Window
Delphi 3 ships with a new utility that allows you to define
and manage the interfaces and their members. Select View |

Type Library to display the Type Library window (see Figure 5).
Notice that the title of the window is our Remote Server type
library, RemoteServer.tlb. The left pane of the window dis-
plays a tree view of the interface type and its members. In this
application, our interface type is IMyServer; at this point, no
members are defined for it. Click on IMyServer, select the
Members page in the right pane, and enter:

Property Query1: IProvider;

Then press Refresh from the toolbar to synchronize the
RemoteServer_TLB.pas unit with this change. Notice the
dispid keyword followed by the members we define. You can
enter the dispid, or leave it to Delphi to assign it (as we did in
this case). The dispid is Delphi’s way of keeping the members in
the order they’re defined, so the compiler can identify the
dispids and their order in the Type Library unit.

We still need to define one more member, but before
doing so, let’s see why. As you know, we didn’t write any

Figure 6: The prop-
erties menu of the
Provider component.

Op Tech

Figure 7: The client form.
SQL statements in the Query1.SQL property. We need
to provide an interface so our client can send a dynamic
SQL statement to Query1, and let it process the query on
the server.

In the MyServer RDM, select the Provider1 component,
right-click to display the properties menu, and select the
first menu choice, Export Provider1 from data module (see
Figure 6). Note that the second member is added to the
Type Library window on the Members page. Again, press
Refresh from the toolbar to synchronize the unit with this
change. Now we have to write a few lines of code for the
server application to process the request from the client
application. We need to add the following code to the
OnDataRequest event of Provider1:

function TMyServer.Provider1DataRequest(Sender: TObject;

Input: OleVariant): OleVariant;

begin
Provider1.DataSet.Close;

// Since DataSet in TProvider doesn't support SQL,
// Provider1 must be cast to type TQuery.
TQuery(Provider1.DataSet).SQL.Add(Input);

Provider1.DataSet.Open;

Result := Provider1.Data;

end;

Save and run the program; that’s it for our Server application.

The Client Application
Open a new project by selecting File | New. On the New
page, select Data Module and press OK. Save Unit1.pas as
uClient.pas, Unit2.pas as uDM.pas, and Project1.dpr as
Client.dpr. From the Data Access page in the Component
palette, select a RemoteServer, a ClientDataSet, and a
DataSource component, and drop them on the
DataModule1 form.

We must also include some components on our client
form and set their properties. Place a Label, Button, Edit,
and DBGrid on the form and arrange them as shown in
Figure 7. Then set the Label’s Caption property to SQL
Statement, and the Button’s Caption to &Run Query1;
delete the Edit’s Text property; and set the DBGrid’s
DataSource to DataModule1.DataSource1. Change Form1’s
Name property to fmClient.

Select the RemoteServer1 component on the DataModule1 form.
Select the ServerName property drop-down list in the Object
Inspector, and select RemoteServer.MyServer (the server applica-
tion we just created). Once you select it, the ServerGUID prop-
erty displays the GUID for the server. If you check the
RemoteServer_TLB.pas unit of the RemoteServer project, you’ll
see that the ServerGUID matches that of the Class ID.

(Note: If you don’t see the server name, select Project | Build

All and try again.)

Now comes the interesting part. Select ClientDataSet1 on the
DataModule1 form, and set its RemoteServer property to
RemoteServer1. Next, we need to set the ProviderName property.
35 November 1997 Delphi Informant
Notice that as soon as you click on the drop-down list in
the Property Inspector, the RemoteServer starts and dis-
plays the interface members we defined in our server pro-
ject’s Type Library; select Provider1. Set DataSource1’s
DataSet property to ClientDataSet1.

We need to write a few lines of code in the OnClick event
of Button1:

procedure TfmClient.Button1Click(Sender: TObject);

var
StrSql : OleVariant;

begin
StrSql := Edit1.Text;

with DataModule1.ClientDataSet1 do
Data := Provider.DataRequest(StrSql);

end;

Before running the client application, make sure the remote
server application isn’t running. Save and run the client appli-
cation; you’ll see the server application automatically launches
without the user’s interaction.

The remote database application server could — and proba-
bly would — be sitting on another machine, in which case
you’d need to assign a value to the RemoteServer1’s
ComputerName property. Once you launch the server applica-
tion on a different machine, it automatically registers itself
with the Windows registry.

Op Tech
Running the Application
When the client application is up and running, enter:

SELECT * FROM ANIMALS

in the Edit component, and press the Run Query1 button.

As mentioned earlier, using a parameterized query or stored
procedure requires a different function call to pass parame-
ter(s) from the client to the server. For example, if you want
to query for animals of a certain size and weight, you’ll need
to provide a mechanism for two parameters. To do this,
place code such as the following in the OnDataRequest event
of the Provider1 component on the server:

function TMyServer.Provider1DataRequest(Sender: TObject;

Input: OleVariant): OleVariant;

var
P : OLEVariant;

begin
ClientDataSet.Close;

P := VarArrayCreate([0,1], VarVariant);

P[0] := VarArrayof([<Param1>, <Value1>]);

P[1] := VarArrayof([<Param2>, <Value2>]);

ClientDataSet.Provider.SetParams(P);

ClientDataSet.Open;

Result := Provider1.Data;

end;

This assumes that Query1 has a SQL statement in its SQL
property, such as:

"SELECT * FROM ANIMALS WHERE SIZE = :size AND WEIGHT = :weight"

where :size and :weight are parameters that need to
receive their values from the client application.

Conclusion
Two advantages of developing n-tier applications are that
they’re easier to maintain and deploy. Such applications
can become complex depending upon the number and
type of triggers, stored procedures, business rules, etc;
however, once the server application is configured, no indi-
vidual BDE set-up or configuration is required on the
client machines. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\NOV\DI9711RM.

Ron Mashrouteh is an application-development consultant with XySoft Systems in
Houston. He has worked with C/C++ in UNIX, and the Windows environment
and Delphi since Version 1.0. He also has done consulting for Dresser Industries
and Texas Commerce Bank, helping them in developing critical real-time data col-
lection applications using Delphi. He can be reached on MSN at xysoft@msn.com
or at (713) 789-1094.
36 November 1997 Delphi Informant

37 November 1997 Delphi Informant

New & Used

By Peter Hyde

Figure 1: A zero-
WebHub
HREF Tools’ Extensible, OOP-Based Framework
for Web Site Creation

You want to be on the bleeding edge? Try submitting your largest-ever
contract bid, in a technology area new to almost everyone, based on

two unreleased development products. That’s bleeding-edge development!
In early 1996, our company did just that
when bidding for the production of a high-
performance Web site and search engine.
After much research, we based our successful
bid on Delphi 2 and HREF Tools’ WebHub
product. According to plan, Delphi 2 was
released in plenty of time for site deploy-
ment. In contrast, WebHub remained in its
“Early Experience Program” for another year.
However, that didn’t prevent us from finish-
ing that job on schedule and deploying sever-
al other highly automated sites in the months
that followed.

In that time, we’ve had several opportunities
to examine other Web automation tools for
ourselves and on behalf of clients —
approaches ranging from other Delphi com-
ponent sets to suites such as Microsoft
FrontPage, Active Server Pages, Borland
IntraBuilder, Sapphire/Web, and OneWave.
Our conclusion has been consistent
throughout: For the kind of sites we tend to
create — dynamic, data-driven, remotely
maintainable, and surfer-friendly — it’s
code WebHub application in Delphi’s IDE.
hard to find a tool set that comes close to
matching WebHub.

Don’t get me wrong; the alternatives have
their place. The best tool for allowing peo-
ple on an intranet to do simple jobs (e.g.
publish a phone-list database) is probably
FrontPage or IntraBuilder. These types of
tools have friendlier learning curves, and are
adept at producing simple pages quickly.
But the minute any part of a site becomes a
“real” application — one needing high per-
formance, complex search-and-response
pages, or features such as e-commerce —
the limitations of these tools become alarm-
ingly evident.

WebHub won us over initially because it
provides an extensible, OOP-based frame-
work for creating Web sites. Out of the
box, it handles the issues critical for
dynamic Web site management: surfer
tracking, security, query cloning, quick
page turnaround, server independence,
upscaling, and maintainability. It also
includes highly configurable components
for presenting database or other informa-
tion as customizable, automatically paged
HTML tables. Over time, its repertoire has
grown to include features such as credit-
card validation, zero-code form mail/mail-
merge support, live graphic creation, and
“instant forms” for database editing and
posting from a browser.

Down to Cases
To illustrate WebHub in action, let’s look
at how easy it is to build a full-fledged,
database-aware Web page from scratch.
Figure 1 shows the application at design

Figure 2: The application shown in Figure 1 as it appears in a
browser.

New & Used
time; Figure 2 shows it running in a browser. Here’s an
overview of the steps to create it:

Place four WebHub components on an empty Delphi
form. The menu bar is generated automatically when the
WebMenu component is placed on the form. The menu
provides a user interface with direct run-time access to
WebHub components, their properties, and external files
they manage (e.g. HTML pages).
Add standard DataSource, DataSet, and DBGrid com-
ponents. (The DBGrid component is optional; it simply
gives the Webmaster a non-Web way of viewing and
editing the table.)
Set two WebHub component properties, and five new
WebHub components are automatically created and
linked at design time because the other components
“knew” they needed them.
Tweak one system-wide control file to tell the WebHub
system where the application is located.
Create an HTML file containing code such as this:

<h1>-Page:homepage=,,,A Simple Scrolling Table</h1>

<h2>Parts Table</h2>

<!-- call the WebDataGrid component to do its stuff -->

%=WebDataGrid1=%

The resulting application allows any number of surfers to
page through the Parts table independently and efficiently. It
can be deployed on a wide range of Web servers — even
simultaneously via secure and insecure servers on the same
system — without recompilation. Modifying a few properties
can alter the table fields, rows-per-page, column headers, and
index order, as well as the location and appearance of the
paging buttons.

Other property changes will make fields editable and add a
“post” button, making it easy to implement database updates via
the Web. To round out this feature, you must add some Delphi
code, but only enough to locate and update the altered record,
just as you would do for a conventional database application.

But Wait, There’s More
If this were the whole story — WebHub as a tool box of fully-
functional components for easily creating Web applications —
it would be interesting. But remember, these are Delphi com-
ponents we are talking about; WebHub is an application
framework designed from the ground up to be extensible.
38 November 1997 Delphi Informant
The best example of this is the TWebAction class — components
designed to be dropped on your form, customized with the logic
specific to your application, then invoked directly from the
HTML, just as the TWebDataGrid was earlier. For logic that’s
likely to be reused in different applications, you simply inherit a
new component from TWebAction and make it fully reusable —
which is how TWebDataGrid came into being.

The TWebAction component properties are also available to
HTML, as is the case with the TWebCreditCard compo-
nent. TWebCreditCard automatically validates credit-card
number and date information entered by a user, and pub-
lishes properties that can be used to display (or act on) the
results of the validation.

Church and State
WebHub’s design, and the extensible macro system that sup-
ports it, result in a true separation of duties: HTML special-
ists can concentrate on the layout while Delphi programmers
implement specific business rules. Therefore, as long as the
relevant properties of the custom TWebAction components are
documented, the HTML writer can “hook into” the required
logic at any time, without knowing a whit about how it works
internally. Similarly, the programmer needs to know only
enough HTML to test the component logic.

This separation of HTML from program logic also has major
implications for a deployed site. With many Web development
tools, changes to a live site require program-level tweaks and
rebuilds — which often involve taking the server down to
deploy them. This is because the HTML is embedded within
the program code. In contrast, WebHub sites can usually be
updated (remotely, if desired) without touching the running
application. The benefits, in terms of minimal site “down” time
and lower costs for long-term maintenance, are significant.

Once a dynamic Web site extends beyond the realm of the triv-
ial, three considerations become vital: surfer tracking, resource
management, and handling peak traffic loads without breaking.

Surfer tracking. WebHub supports surfer tracking (i.e.
“saving state”) in a way that is dramatically simpler for the
programmer than other approaches. Effectively, by the
time your custom code is called, the current user’s infor-
mation (including the data gleaned from them during their
stay at the Web site) is in memory and available via various
component properties. This includes automatic “cloning”
of any queries the application has made for that user,
ensuring that one visitor doesn’t end up looking at anoth-
er’s query results.

This shows the importance of designing your application to
deal with one user at a time — the current one. WebHub
developers shouldn’t be concerned about issues such as
multi-threading, or managing system resources in complex
ISAPI DLLs.

Resource management. Resources such as system memory or
client/server database licenses can require careful management

New & Used
in a Web site that is subject to widely varying loads.
WebHub’s query-cloning feature can be preset to manage a
finite pool of open queries, ensuring an optimal balance
between quick response (because cloned queries need not be
re-run as the surfer pages through a DataSet), and the cost of
back-end licenses.
39 November 1997 Delphi Informant
Handling traffic. When a site is experiencing high traffic,
this must be managed properly by queuing requests. If the
site is really busy, it should return a message saying “we’re
busy; try again later,” after a specified time. WebHub handles
these elements in a bulletproof fashion, leaving the applica-
tion developer free to concentrate on their custom logic.
TWebApp Represents and manages the Web application as a whole. It provides direct pointers to the essential
components and properties needed while writing a Web application. Variants of this component
are provided that have cut down or extended HTML macro processing, including easy
database-access macros.

TWebSession Does for surfers what TWebApp does for the application as a whole. It tracks each surfer’s data
from arrival at the site, including data entered on HTML forms, to application-specific surfer
data and component-state data.

TWebServer Encapsulates the properties of the Web server being used. It presents all the CGI and system
environment data passed from the Web server to the application as accessed string and list properties.

TWebAppOutput Sends output from the application to the Web server. Typically, the output consists of HTML,
but it can be a different MIME type (e.g. binary). Furthermore, this component can perform
WebHub macro expansion during transmission, allowing a programmer to send HTML “chunks”
and macros that have been defined externally by the HTML specialist.

TWebCommandLine Connects the application to the Runner and the Hub, and brings each page request into the
application. Best regarded as the “input” part of the equation, while TWebAppOutput is the “output.”

TWebInfo Keeps track of other components — it monitors open applications, open pages and sessions, and
assists in saving state. It is the closest thing to a “control component” in WebHub.

TWebMenu Automatically checks other WebHub components and builds a menu of their management functions,
providing an instant user interface.

TWebAction A component class that can be directly called from HTML to perform a given task, enabling
access to pieces of reusable custom Delphi logic.

TWebDataGrid Presents tabular data such as static database tables or the results of dynamic queries. It automatically
manages display of different data types, with surfer-selectable index order, display sets, and page
sizes (if desired). It provides paging controls, but these can be overridden by the developer. Hot
links can be made within any field — these links can be jumps to detail pages or links to
resources such as audio or image files. Other property changes can turn a TWebDataGrid table
into a grid of editable fields, allowing for database display and update.

TWebDataScan Provides the core functionality of TWebDataGrid, but enables the developer to output each row
of the data, providing a flexible free-form output and table format. (Related components include
TWebDropDown, TWebOutline, TWebStringGrid, and TWebListGrid.)

TWebScanList Handles paged display of non-database lists and information, useful for result sets from a source
other than a database query (i.e. an indexing engine).

TWebDataForm Supports “instant form” presentation and provides display-only and editable views of database
fields. A simple macro parameter determines which view will appear, and a TWebDataPoster
component can be added to handle table updating.

TWebCreditCard Used to verify credit-card number and expiration by applying standard number-validation techniques.
TWebMailForm Takes surfer form input and automatically e-mails data to a preset destination. Fully configurable,

allowing one Web application to support many sites, forms, e-mail templates, and target addresses.
For developers creating mail applications, such as bulk e-mailing from a site, the TWebMail
component provides lower-level functionality.

TWebHTTP Makes Web-page requests from within a Web application — useful for sites that need to “watch”
or draw information from other sites. Like TWebMail and TWebTelNet, this component depends
on the TWebSock component that can also be used to implement direct TCP/IP communications
with external services, or even with applications on the surfer’s machine, such as a Java applet.

TWebPicture Creates on-the-fly, custom images for display in Web pages. Similar logic can be used to convert
images from database BLOBs into files that can be viewed in a browser.

Component Description

Key WebHub Components

New & Used
Better yet,
WebHub’s
architecture
makes it
exceptionally
easy to
upscale the
site and
implement
load-sharing.
This may
include mov-
ing “media”

files (i.e. images, video, and sound) to another server. It may
also run additional copies of your application on the origi-
nal server, and set up a cluster of servers handling the same
site in a round-robin fashion. WebHub’s design permits any,
and all, of these options without needing to change a line of
code, leading to near- linear scalability of site throughput
without redesigning your application.

WebHub’s Architecture
A quick look at WebHub’s architecture will clarify how this is
possible (see Figure 3). The blocks shaded in blue represent fea-
tures common to all automated Web sites. However, they also
hide many areas of complexity, such as the extent to which the
Web application needs to be customized to match different
server interfaces, or extended to handle some of the queuing
and resource features noted earlier.

The green blocks are unique to WebHub. The Runner is a
small executable or DLL (typically 100KB) that manages all
server-specific logic. Select a different Runner from the set
supplied with WebHub, and you can support a different
server-interface protocol (e.g. ISAPI, CGI-WIN, or CGI-
BIN). In the case of the CGI protocols, the fact that the
Runner is small is a major bonus. As CGI loads and unloads
the target application for each request, enormous overhead is
avoided because Runner is tiny.

The Hub provides bulletproof request queuing and also acts
as a manager for Web applications deployed on the site.
With the Runner, the Hub implements the basic surfer iden-
tification and tracking mechanisms that make saving-state
and several other advanced features possible. Significantly,
the Web application in this model now becomes a “lite” ver-
sion. It no longer needs to be concerned about server, queu-
ing, or resource issues, and instead can use the custom page-
generation and back-end system interaction logic on a “one
request for one surfer at a time” basis.

The full potential of this architecture is seen early on in the
development process. For example, instead of trying to debug
complex, thread-safe DLLs that can crash the entire Web
server when an error occurs, WebHub developers can do
their development and live debugging in the Delphi IDE.
Application bugs don’t affect the Hub, Runner, or Web server,
and new versions can be built, deployed, and tested in sec-
onds without taking the server down.

Figure 3: The architecture: WebHub’s Runner
and Hub model allow you to create simpler
Web applications.
40 November 1997 Delphi Informant
Scalability derives from the
Hub’s ability to manage vari-
ous applications, each of
which provides different ser-
vices required by the site. A
truly modular solution is
possible because the same
surfer information can be
seamlessly shared across and
among applications. Apart
from the improvements in
program maintainability, this
is important when some
requests take significantly
longer to service than others.
They can be routed to a Web
application built specifically
for that purpose, while “regu-
lar” requests from other
surfers are handled by the
usual application. The result
is that other surfers can have
their requests serviced,
although one surfer may have
made a request that would normally tie up the site for sev-
eral seconds.

The Hub can manage multiple copies of an application called
in a “round robin” fashion (including copies hosted on neigh-
boring servers). With modular design, this means a site man-
ager can tune a busy site to strike a precise balance between
the number of requests of a given nature, the time taken to
handle those requests, and the resources provided (in terms of
copies of the application) to make the site run smoothly.

Critically Speaking
If there is any bad news about WebHub, it must center on the
fact that it’s a sizeable product that is being continually revised
and extended. The learning curve for “the basics” is quite good,
but with over 30 Web components and 70 other utility compo-
nents available, it would take a very confident developer to
claim in-depth knowledge of the entire product. This is not
helped by the fact that (at the time of this writing) many prop-
erties for non-core components are not fully documented in the
3MB Help file and 200-page manual that ships with WebHub.

Furthermore, with new revisions and features being released
at a steady pace, a sensible eye must be kept on version man-
agement, especially when deciding which WebHub version to
use for deploying a completed site. On the other hand, the
free e-mail list server provides excellent, friendly, and timely
technical support. The range of example applications provid-
ed with WebHub covers most common — and many
uncommon — Web site needs. These include surfer authen-
tication, a shopping cart, form mail, integration with
VRML, Java and JavaScript, remote administration, live
graphic creation, data-driven queries, database search/detail
drill down, database editing, surfer-driven site customization,
multilingual pages, and more.

WebHub is a full-featured, extensible
component set for building dynamic
server-independent Web sites. Its archi-
tecture provides significant perfor-
mance, security, and reliability benefits,
allowing developers to build modular
Web applications that need only imple-
ment the custom features of a given
site. The components support Delphi 2
and 3, with C++Builder support pend-
ing. Development platforms can be
Windows 95 or Windows NT 3.51/4.0,
using any of the Web servers commonly
available for these platforms.
Deployment must be on Windows NT.

HREF Tools Corp.
300 B St., Ste. 215
Santa Rosa, CA 95401
Phone: (707) 542-0844
Fax: (707) 542-0896
E-Mail: webhubsales@href.com
Web Site: http://www.href.com
Price: Entry level system is US$299
(via ZAC Catalog); Professional version
is US$595.

New & Used
Conclusion
Developing dynamic Web sites is an exciting, challenging,
and distinctly non-trivial exercise. All too often, the traps
are not obvious until after a site has been deployed and
starts to experience real traffic. With WebHub as a starting
point, a developer can safely ignore many otherwise irksome
details, and be assured that if an unexpected need does arise,
the development framework is sufficiently flexible and well
supported. In other words, this is a tool you can use with
confidence for serious applications. ∆

Peter Hyde is the author of TCompress and TCompLHA component sets for
Delphi/C++Builder, and Development Director of South Pacific Information
Services Ltd., which specializes in dynamic Web site development and is the New
Zealand technical support center for WebHub. He can be reached by e-mail at
peter@spis.co.nz or via http://www.spis.co.nz.
41 November 1997 Delphi Informant

TextFile
Steve McConnell Connects Again with Rapid Development
42 November 1997 Delphi Informant

“Rapid Development”
continued on page 43
holistic approach that consid-
ers their relationship to one
another. He states “you can
focus on all four dimensions at
the same time.” This becomes
particularly evident in the
many case studies. Some dra-
matically demonstrate how to
create a programmer’s hell.
Others provide examples of
how to introduce a level of
sanity into the process.

McConnell’s approach works
well — you can hardly miss
the point. First, you are pre-
sented with a set of principles.
Then a case history provides a
concrete example. Finally, the
principles are expanded so the
mistakes or virtues inherent in
the case study become clear
and applicable.

Rapid Development is divid-
ed into three sections:
“Efficient Development”
introduces the four dimen-
sions and other fundamental
principles; “Rapid
Development” examines criti-
cal issues that must be consid-
ered to intelligently plan and
complete a software project;
and “Best Practices” provides
successful examples of
approaches involving one or
more of the four dimensions.

Two essential topics pre-
sented in the opening sec-
tion are quality assurance
and risk management. Lack
of attention to quality at the
beginning of a project can
greatly delay its completion.
A bug is easier to find and
fix soon after it is created
rather than after adding lay-
ers of additional code.
Likewise, ignoring the risks
and pitfalls of a particular
approach can create havoc
with an otherwise reasonable
schedule. With the latter
topic, we learn how to iden-
tify and analyze risks, then
how to prioritize and control
them. McConnell points out
there is a difference between
taking calculated risks and
simply gambling.

The heart of the book, the
Rapid Development section,
contains a wealth of impor-
tant topics, including sched-
uling. Some of these, such as
motivation and teamwork,
concentrate on peopleware.
The positive aspects of using
rewards and incentives to
motivate, and conversely the
contributors to low morale,
are covered in the section on
motivation. These sections
alone may inspire many
team programmers to con-
sider purchasing Rapid
Development as a gift for
their bosses! In these pages
you’ll learn the fine art of
planning a software project
so that it has a good chance
of being completed on
schedule and meeting speci-
fications. The section on
productivity tools provides a
realistic approach to the
acquisition and use of new
technology to expedite
development, and should be
of interest to developers and
managers alike.

The final section intro-
duces a series of best prac-
tices — approaches to rapid
development that have
proven successful.
McConnell makes it clear
that some are mutually
exclusive, some are obvious,
and some may take getting
accustomed to. Each section
begins with a summary of
its efficacy for each of five
considerations, its major
risks, and its interactions
and tradeoffs. A short
description of the practice
itself, an outline of how to
use it, and a detailed discus-
sion of related issues fol-
lows.

Throughout the book,
McConnell deals with each
topic thoroughly and with a
wealth of concrete exam-
ples. The large collection of
case studies also adds clarity
and power. Each subsection
concludes with a list of sug-
Steve McConnell’s previous
work, Code Complete
[Microsoft Press, 1993],
quickly became the book
every software developer seri-
ous about the craft had to
own and study. His latest
book from Microsoft Press,
Rapid Development, is a wor-
thy follow-up. Subtitled
Taming Wild Software
Schedules, this unusual book
seeks to expose those prac-
tices and attitudes that con-
tribute to inferior software
and schedule delays. Author
Steve McConnell offers solu-
tions that enable us to pro-
duce the best software in the
shortest possible time.

Scheduling, however,
hardly begins to encapsulate
the topics covered in this
ambitious treatise. After
briefly defining rapid devel-
opment, McConnell lays
out a basic strategy to avoid
classic mistakes: Use devel-
opment fundamentals; man-
age risks; and schedule skill-
fully. He also introduces
what he calls the “four
dimensions of development
speed”: people involved,
processes used, products to
be produced, and techno-
logical tools used. These
themes are developed
throughout the book.

It would be tempting, and
certainly easier, to discuss each
of the dimensions of software
production in isolation.
Instead, McConnell takes a

43

TextFile
gested readings, and at book’s end there
is an exhaustive bibliography of 230
books and articles.

Stylistically, this is a brilliant synthesis of a
scholarly treatise, a popularization of more
specific and difficult primary sources, and a
collection of fascinating case studies. The
organization is superb. Therefore, it is very
easy to re-locate particular examples after
you have read the entire book.

An important question remains: Who
will benefit from reading this book?

Rapid Development (cont.)
November 1997 Delphi Informant
Sections that explain how to work more
effectively with people, and, to some
extent, processes, will be helpful to soft-
ware development managers and team
leaders. However, many other discussions
apply to independent developers. If you
feel frustrated with your current approach
to development; if you are constantly
falling behind schedule; if you need
ammunition to convince your managers
to adopt a more reasonable approach to
the project goals and timelines they
impose on you — Steve McConnell’s
Rapid Development is for you.

— Alan C. Moore, Ph.D.

Rapid Development: Taming Wild Software
Schedules by Steve McConnell, Microsoft
Press, One Microsoft Way, Redmond, WA
98052-6399, (206) 936-2810.

ISBN: 1-55615-900-5
Price: US$35 (647 pages)

File | New
Directions / Commentary

Beyond Hype
Two Technologies with Staying Power
In today’s climate, determining whether a new software technology is a long-term trend or a quick-hit fad
can be a full-time job. Indeed, thumbing through the pages of PC Week, InfoWorld, etc., one can easily

succumb to the seemingly endless dribble of hype that permeates our industry. If we’re not on guard, we
might actually begin to believe it.
While we may not be able to
depend on the validity of a
particular technology until
the market makes its deter-
mination, I think we can
come close. This month, I
highlight two emerging tech-
nologies I believe will be
among the software develop-
ment trends that will last as
we move into 1998.

“Studios”
For most developers, the days
of working with a single
development tool are over.
With the diversity of applica-
tion architectures — desktop,
client/server, three-tier,
intranets, extranets, and the
Internet — you may have to
employ several tools for a sin-
gle application. It’s safe to say
that, in addition to working
primarily with Delphi, many
of you work with other development
tools along the way.

Until recently, little integration existed
across development-tool environments
— even from the same vendor. This is
changing, and in some important ways.
Microsoft’s Visual Studio was the first
integrated development environment
that allowed you to work with multiple
development tools from within the
same IDE shell. So, whether you use
Microsoft Visual InterDev, Visual C++,
or Visual J++, you can work within the
44 November 1997 Delphi Informant
same environment. Similarly, PowerSoft
recently announced its own studio ver-
sion, coined PowerStudio, to incorpo-
rate PowerBuilder, Power ++, and other
PowerSoft tools. A developer “studio”
offers several advantages over a single-
tool, IDE approach. Not only can
developers better integrate components
from these various tools, they can also
learn a new tool or language without
being forced to master a new IDE. Will
Borland follow suit with a studio that
will integrate Delphi, C++Builder, and
JBuilder? (I sure hope so, though I’d
like to make one humble plea to
Borland: Please avoid using
the horribly overused words
“Builder” and “Studio” in
such a product’s name.)

Dynamic HTML
The Web industry is filled
with hype, but one technolo-
gy I am convinced will prove
to be a key trend is Dynamic
HTML. Twelve months ago,
many people thought client-
side scripting languages —
JavaScript and VBScript —
would be a fad, superceded
by Java and ActiveX for pro-
viding dynamic content to
the Web. While applets and
controls serve a purpose,
their component-based
nature has proven very spe-
cific and contained. How-
ever, the power, speed, and
flexibility that Dynamic
HTML brings to the Web

are compelling. While widespread use
of Dynamic HTML is surely hindered
by the standards war between
Netscape and Microsoft, I am con-
vinced that a large subset will become
ubiquitous by the end of 1998. ∆

— Richard Wagner

Richard Wagner is Chief Technology
Officer of Acadia Software in the Boston,
MA area, and Contributing Editor to
Delphi Informant. He welcomes your
comments at rwagner@acadians.com.

	Table of Contents
	Delphi Tools
	Beond Technology Releases Multimedia Suite
	Nesbitt Software Offers
	Remember All Suite

	Top Support Ships TopGrid
	Sax Software Announces Sax Basic Engine 4.0
	DTalk Brings Speech to Delphi Applications

	Sequiter Software Releases CodeBase 6.3
	Luxent Software Ships SuccessWare Database Productivity Components
	ExceleTel Adds Telephony to Delphi Applications
	Book for Sale

	Newsline
	Borland Releases New ObjectInsight for Delphi 3
	Borland Joins Java Development on IBM’s San Francisco Project
	Luxent Development Merges DFL Software and SuccessWare International
	Borland Expands AS/400 Partner Program
	Corel Licenses Borland Technology
	Borland Previews Visual dBase 7

	On the Cover
	The Mechanisms
	The Memory-Mapped File
	The Mutex
	Getting Fancy
	Conclusion

	Informant Spotlight
	Windows Messages
	Talk Amongst Yourselves
	Defining the Message
	Sending a Number
	Sending a Bitmap
	Memory-Mapped Files
	Shutting Things Down

	DBNavigator
	An Overview
	Defining the DecisionQuery
	Defining the DecisionCube
	Controlling Memory Use
	Using the Data-Aware Decision Controls
	Using the DecisionGrid
	Using the DecisionGraph
	Using a DecisionPivot
	Conclusion

	Delphi Reports
	A Printing Primer
	TPrinter Properties
	Canvas Differences
	Centering Text
	Computing the Line Height
	Determining Page Breaks
	Printing from Tables
	Printer Peculiarities
	Tools for the Job
	Conclusion
	Listing One — Printing from a table

	The API Calls
	BDE Error Messages
	Packing dBASE Tables
	Packing Paradox Tables
	Table Pathfinding
	Copying Tables
	Network Usernames
	Regenerating Indices
	Group Record Deletion in Paradox Tables
	Creating Permanent Aliases
	More to Come

	At Your Fingertips
	Nix on the Screen Saver
	Relaunching an Application at Start Up
	Controlling Form Resizing

	Op Tech
	The Server Application
	The Type Library Window
	The Client Application
	Running the Application
	Conclusion

	New & Used
	Down to Cases
	But Wait, There’s More
	Church and State
	WebHub’s Architecture
	Critically Speaking
	Conclusion
	Key WebHub Components
	Informant Fact File

	TextFile
	Steve McConnell Connects Again with Rapid Development

	File I New

